
The Magic Circle by J. M. Waterhouse

The Statistical Grimoire:
Statistics for the Natural Sciences Using R

Version 4.0.0

Dr. Jeffrey M. Pisklak
University of Alberta

The Statistical Grimoire: Statistics for the Natural Sciences Using R
by Jeffrey M. Pisklak is licensed under Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International.

GLOBE https://statistical-grimoire.neocities.org/
Github https://github.com/statistical-grimoire/book

https://bsky.app/profile/statgrimoire.bsky.social
Envelope statistical-grimoire@proton.me

This is LuaHBTeX, Version 1.18.0 (TeX Live 2024)
Generation Date: 2025-06-30

Header Typeface: IM Fell English
Body Typeface: Computer Modern
Code Typeface: Source Code Pro (Hunt, 2024)

Frontispiece image: Waterhouse, J. M. (1886). The Magic Circle [Painting]. The Tate Gallery -
London, England

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://statistical-grimoire.neocities.org/
https://github.com/statistical-grimoire/book
https://bsky.app/profile/statgrimoire.bsky.social

This book is dedicated to Satan and the only three good math instructors I ever had. It is
written in spite of all the others.

Preface

Since prefaces often go unread, I shall keep this brief. This text was born out of a need to offer
my students a robust, open-access (i.e., free) introduction to R, specifically for those without any
programming experience. Long term it is intended to serve as a practical, open-access manual,
guiding complete beginners through both statistics and statistical programming in a thorough and
clear manner. Please consider everything herein a work in progress.

Foolish Assumptions Made by Your Author:

• You will actually read this (yes, I’m an optimist).

• You probably don’t like math. You might even fear it, but deep down, you know it’s good
for you. Math, like confession, is rarely pleasant but often necessary.

• You’ll start at the beginning and move forward. Because jumping ahead is like summoning
something you don’t understand. It will arrive—and you won’t like what it brings.

• You won’t take the sillier stuff too seriously—especially the parts that sound true. They
probably aren’t. Probably.

Errata:

• No manuscript, however cursed or consecrated, is free from the creeping taint of error.
Should you unearth any horrors—do not consign your discovery to silence. Instead, record
your findings within the digital vaults of GitHub, where the keeper of this tome may attempt
to contain and exorcise the corruption ... before it spreads further.

– https://github.com/statistical-grimoire/book/issues

v

https://github.com/statistical-grimoire/book/issues

Contents

Title ii

Preface v

I R Programming - An Initiation 1

1 Summoning Basics: An Introduction to R 3
1.1 What is R? . 3

1.1.1 The Genesis of R . 4
1.2 Why a Programming Language? . 4

1.2.1 Why R? . 7
1.3 Installing and Running R on Your Computer . 8

1.3.1 Languages and Environments . 8
1.3.2 Installation . 9
1.3.3 Upgrading . 10
1.3.4 Consoles, Scripts, and Running R Code . 10
1.3.5 Keyboard Shortcuts . 12

1.4 How To Code Using R: The Fundamentals . 13
1.4.1 Basic Arithmetic . 14
1.4.2 Understanding Scientific Notation . 17
1.4.3 Commenting Out Lines . 17
1.4.4 Creating Objects . 18
1.4.5 Vectors . 22
1.4.6 Operators And Comparison Statements . 27
1.4.7 Functions . 28
1.4.8 R (Help) Documentation . 32
1.4.9 Missing Values . 33
1.4.10 Data Frames . 35

1.5 Packages . 46

vii

1.6 File Extensions . 47
1.7 Directories . 50

1.7.1 The Working Directory . 50
1.7.2 Navigating Directories . 52

2 Harnessing Sacred Rites of the tidyverse: Plotting Basics 57
2.1 Worshiping at the alter of the tidyverse . 58
2.2 Plotting with R . 59

2.2.1 An example data set: msleep . 60
2.3 Adding layers . 62

2.3.1 Inspecting potential outliers . 63
2.3.2 Logarithms . 64

2.4 Aesthetics . 67
2.4.1 Aesthetics by variable . 69

2.5 Displaying trends . 72
2.6 Facets . 74
2.7 Labels . 76
2.8 Saving the plot . 77

2.8.1 Vector graphics vs. Raster graphics . 77
2.9 Scales . 79

2.9.1 Position Scales: Modifying the Axis Breaks 80
2.9.2 Modifying the Axis Range . 83
2.9.3 Colour Scales: Modifying Colour Mappings 84
2.9.4 Discrete Colour Scales . 85
2.9.5 Continuous Colour Scales . 89
2.9.6 Shape Scales . 94
2.9.7 Legend Titles . 95
2.9.8 Other Scales . 96

2.10 Modifying Other Non-data Components . 96
2.10.1 Built-in Themes . 97
2.10.2 Customizing Themes . 98

2.11 A Final Note . 102

3 The Invocation and Metamorphosis of Data 103
3.1 Spreadsheet Software . 104
3.2 Using an Ethical File Format . 104
3.3 The .CSV Format . 105
3.4 Delimiters . 107
3.5 Reading a CSV File into R . 108

3.5.1 Reading Other File Types into R . 110

viii

3.6 Tibbles vs. Data Frames . 111
3.6.1 Displaying Tibbles in the Console . 114

3.7 Wide Data vs. Tidy Data . 117
3.7.1 Wide Data . 117
3.7.2 Tidy data . 119

3.8 Laying Pipe (The |> and %>% Operators) . 121
3.8.1 Data Manipulation Example . 124

3.9 Factors . 130
3.9.1 Ordering Levels . 132
3.9.2 Naming Levels . 134

3.10 Adding Error Bars . 136
3.11 Bar Fill Colour . 137
3.12 Putting It All Together . 140

II Descriptive Statistics - Seeing Without Asking 145

4 Taxonomies of the Profane – Variables, Scales, and Their Unholy Properties 147
4.1 A Practical Problem . 147
4.2 Descriptive and Inferential Analyses . 149
4.3 Data . 150
4.4 Variables . 150
4.5 Measurement and The Problem of Measurability 152
4.6 Scales of Measurement . 153

4.6.1 Nominal Scales . 154
4.6.2 Ordinal Scales . 154
4.6.3 Interval Scales . 155
4.6.4 Ratio Scales . 158
4.6.5 Implications of Scale Type for Statistical Analysis 158

4.7 Other Distinctions Between Variables . 163

Glossary 167

A <- vs. = 173

B HCL Colour Palettes 177

References 181

ix

PART I

R Programming - An Initiation

What lies ahead in this first part is nothing short of a trial by fire. This section contains a wealth of

information that, at first glance, should feel overwhelming - like staring into the heart of an inferno.

Any reader who believes this content must be memorized is venturing down a perilous path, one that will

surely lead to being consumed by the flames they are stepping in to.

The goal here is not to transform the reader into an expert with R, programming, or statistics.

Instead, this section is designed to immerse the reader in the R language, offering hands-on experience

while building a strong foundational understanding. Think of it as the first incantations in the dark art of

programming. The focus should be on grasping the underlying logic of the code rather than committing

it to memory.1 Programming is not merely a list of spells to recite by rote—it is a craft, a skill honed

through practice and understanding. Readers would do well to approach it wisely, or risk being scorched

by the fire they seek to wield.

1Every section in this book has a corresponding bookmark in the PDF file for quick reference.

1

Chapter 1

Summoning Basics:

An Introduction to R

To begin with ...

1.1 What is R?

R
is a programming language. A programming language is a means by which mortals

commune with the cold, unyielding logic of machines. Humans—featherless bipedal

apes known asHomo sapiens—fashion these languages as incantations to command life-

less thralls known as computers. These soulless automatons follow rigid, unforgiving

rules, devoid of will, incapable of deviating from their ordained paths (Turing, 1950).

Yet, as the ancients knew, the boundary between man and machine is a shadowy one. In a bygone age,

computation was not formed of silicon and wires but of flesh and bone. Mortal “computers” laboured

in dimly lit chambers, chained to the drudgery of endless calculations, their toil dictated by the cryptic

marks and guttural utterances of their superiors. Today, the human computer is a relic, swept away by

the inexorable tide of technological sorcery, as mathematics and other arcane arts, such as reading and

writing, wither further and further into obscurity, forsaken by the students of this benighted age.

In the modern day, the digital computer reigns as the unchallenged sovereign of computation.

Forged from silicon and shrouded in enigmatic circuitry, this mechanical progeny bears a dark resem-

blance to its primate forerunner—save for one vital distinction: it is unflinchingly logical. Some mortals,

perhaps out of desperation or hubris, even dare to call these constructs “smart.” Such claims, however,

speak volumes about the feeble intellects of their humanmasters rather than the devices themselves. With

these machines now enthroned, society has deemed it unnecessary to burden young minds with the rites

of a once-venerated education. Mathematics—the ancient domain of sweat, tears, and torment—has been

cast aside, its cruel trials abandoned, and with them, the rich harvest of discipline and understanding that

3

1. Summoning Basics: An Introduction to R 4

once emerged from the crucible of suffering.

1.1.1 The Genesis of R

The name “R” was derived from the first initials of its original two programmers, Robert Gen-
tleman and Ross Ihaka. The decision to name the language using a single English letter is what
might, charitably, be called a joke on the part of these two programmers, who saw themselves
poking fun at R’s parent language, which was given the unimaginative name of “S”. In the 1970s
the S language had undergone its initial development at the famous Bell Laboratories with the
primary aim of enabling and encouraging “GOOD DATA ANALYSIS”- a goal so fundamental to
the ethos of S that the authors, Becker and Chambers (1984), felt they had to emphasize it using
uppercase lettering inside the preface to the language’s inaugural instruction manual (the upper-
case lettering has been reproduced here for the reader’s benefit). The familial correspondence R
has with S is present even to this day, to such an extent that Becker and Chambers (1984) original
manual could probably function decently well as an introductory manual to R itself.

1.2 Why a Programming Language?

At this point readers might be wondering why it should ever be necessary to learn a program-
ming language to conduct statistics and data analysis more generally. These topics are usually
considered difficult enough by many students and educators, what need is there to compound this
with a programming language? Why not, for instance, make use of any one of the many pieces
of statistical software that already exist and require no requisite knowledge of programming? In
other words, why not use software such as SPSS1 or one of its many malformed, and equally
expensive, doppelgängers, Minitab, SAS, and Stata.

The primary answer to this question lies in flexibility. There is rarely a single correct way to
analyze data, as different datasets come with their own unique challenges and intricacies. These
complexities often resist the rigid, prescriptive approaches employed by many proprietary software
programs. This is not to say software like SPSS cannot adapt to such scenarios—it often can.
However, this adaptation typically comes at a cost: users may need to pay for additional features
not included in the original purchase, or they may face an even steeper learning curve. One that
forces mastery of a obscure and enigmatic language. A language that is so specific to the software,
that only a select few (if any) even seem to understand it.

In direct contrast to this, R offers an intuitive and empowering experience for users. While
it may seem daunting at first, R operates in a straightforward and logical manner, much like a
calculator. Many users discover that wielding R is far easier than they initially expected. This

1SPSS is popular software for conducting statistics that was originally released in the late 1960s and is an
acronym for Statistical Package for the Social Sciences. At some point it was purchased by IBM and re-branded to
mean Steeply Priced Shitty Software.

5 Why a Programming Language?

is largely due to the vibrant and dedicated R community that exists online, which has cultivated
an extensive network of resources over the years. Acolytes of R see it as something worthwhile
to support and develop—often at their own personal time and expense. Proprietary software like
SPSS has no equivalent to this, nor will it ever. Users are often snared within its ecosystem not
out of preference or love for the program, but because it is all they have ever known.

Although programs like SPSS may initially appear familiar to new users due to their resem-
blance to popular spreadsheet software like Microsoft Excel, this familiarity is purely superficial.
To illustrate, SPSS and its equivalents will, in a manner similar to most spreadsheet software,
present users with an array of buttons and menus above a friendly spreadsheet-style grid. However,
the similarities end there. New users will quickly find themselves overwhelmed by the abundance
of strange options needed to perform even simple tasks, such as loading and viewing a dataset.
Contrary to what their marketing might lead you to believe, the learning curve for these programs
is dangerously steep, and users are unknowingly at risk of being lead off a cliff.

Owing to its nature as a programming language crafted for statistics, R is grounded by
the logic of mathematics. This foundation often makes it easier for new users to understand and
build upon, even for those who claim to dislike math. Moreover, proficiency with R grants users
the ability to work with other statistical software if needed. The reverse, however, is rarely true:
mastering SPSS or similar programs does not provide the same level of flexibility or transferable
skills.

An altogether different answer to the question that opened this section, and one that will
appeal to the University students reading this, is simply cost. R is free for the user, with no need
to put up with annoying advertising or pay for additional features. The same can not be said of
the other aforementioned software which are almost always subscription based, requiring the user
to consistently renew an expensive license to use the software. In fact, upon visiting the respective
websites for SPSS and other, slightly less talked about, SPSS-style software like Minitab, and
Stata, one can see that it is worryingly difficult to find any price listings whatsoever for these
programs—evoking the age old wisdom that, if you have to ask the price, you probably can’t
afford it. But R is not just free in monetary terms, it is also free in philosophical terms. R adopts
the Free Software Foundation’s GNU General Public License and thus adheres to the philosophy
of “free software” (what some might term “open-source”). From the GNU project website (Free
Software Foundation, 2024):

1. Summoning Basics: An Introduction to R 6

A program is free software if the program's users have the four essential freedoms:

• Freedom 0: The freedom to run the program as you wish, for any purpose.

• Freedom 1: The freedom to study how the programworks, and change it so it does your

computing as you wish. Access to the source code is a precondition for this.

• Freedom 2: The freedom to redistribute copies so you can help others.

• Freedom 3: The freedom to distribute copies of your modified versions to others. By

doing this you can give the whole community a chance to benefit from your changes.

Access to the source code is a precondition for this.

This philosophy extends beyond the software itself to include both its file formats and help
documentation. For years, the dissemination of scientific findings has been hindered by the re-
liance on proprietary file formats imposed by commercial research tools. Locking information
within these exclusive systems is clearly counterproductive to scientific progress, as it binds re-
searchers to overpriced, branded ecosystems. Such practices prioritize profit over the broader
goals of accessibility and collaboration, making their continued adoption ethically questionable.
In practical terms, this means that choosing R is not just about its functionality—it is also a
statement against the restrictive and exploitative behaviors perpetuated by proprietary software
providers. More plainly, and if for no other reason, we should use R just to give the middle finger
to these companies.

As if you didn’t need any other reasons to start using R immediately, here are some more:

• R Is Not A Gooey Mess: Unlike programs tied to a graphical user interface (GUI, often
called “gooey”), R is not limited by point-and-click constraints. Its capabilities are as vast
as what you and others can program—and your computer can handle.

• Advanced Statistical Capabilities: R’s packages make it easy to apply best practices in
statistics.

• Enhanced Data Visualization: With intuitive tools like ggplot2, R easily permits sophis-
ticated and customized visualizations, helping you communicate findings with clarity and
impact.

• Reproducible Research: R is built for reproducible research, aligning with open-science
principles. It allows you to create scripts that are easy to share, review, and rerun, by
anyone. This helps ensure transparency, accuracy, and reliability.

• Integration with Other Tools: R can easily integrate with other software and program-
ming languages, such as Python, SQL, HTML, LATEX, and even Excel. This makes it a

https://unesdoc.unesco.org/ark:/48223/pf0000379949

7 Why a Programming Language?

valuable tool for working in diverse computational environments.

• Growing Demand in the Job Market: R is highly valued in the job market, partic-
ularly in data science, analytics, and research. Mastering R opens up a wealth of career
opportunities.

In summary, while the prospect of learning a programming language like R may seem daunt-
ing at first, it ultimately provides a more adaptable, intuitive, ethical, affordable, and rewarding
tool for statistical analysis than many of its proprietary counterparts.

1.2.1 Why R?

At this point, it is worth addressing a question that comes up often: “Why use R instead of
something like Python or Julia?” It is a fair question. After all, Python and Julia—like R—are
full-fledged programming languages that are powerful and capable, but the difference comes down
to origin story.

R is not a general-purpose language. It is the progeny of S, a language birthed in the depths
of statistical practice for one primary goal: GOOD DATA ANALYSIS. Everything about R—from
its object types to its default printing behaviour—is tailored to the sorts of things data analysts
do every day.

By contrast, Python and Julia are general-purpose languages. They are designed to do
many things well: build websites, run simulations, automate tasks, and yes, analyse data. But
this means that good data analysis is a goal these languages aspire to, not one they were born to
achieve.

To illustrate, suppose you wanted to calculate the mean of the numbers 1 to 666. In R, this
is as natural as a reflex:

1 mean(1:666)

333.5

No need to import packages. No need to loop. No need to define arrays. It just works.

In Python, you will find that a bit more ceremony is required:

1 x = list(range(1, 667))

2 print(sum(x) / len(x))

333.5

Additional packages, like Python’s excellent numpy package can simplify what needs to be written,
but it still is not quite so good as what R offers as a baseline user experience.

1. Summoning Basics: An Introduction to R 8

Julia sits somewhere in the middle. It was built with scientific computing in mind, and its
syntax can often be just as clean as R’s:

1 using Statistics

2 mean(1:666)

333.5

However, Julia still expects you to opt in to statistics, with basic functions like mean() not being
available until you explicitly load them. That is not a flaw—it’s a philosophical choice. Julia gives
you a lean, high-performance core, and leaves the rest to you.

R, by contrast, assumes you are doing data analysis. You do not have to ask for permission
to compute a mean. Like a loyal familiar, it is already waiting for you. Moreover, neither Julia
nor Python have the mature ecosystem of statistical tools, diagnostic plots, or nuanced modelling
features that R does—at least not yet. R’s statistical packages, often written by the very people
developing the methods, remain second to none.

1.3 Installing and Running R on Your Computer

1.3.1 Languages and Environments

R will install and run straightforwardly on Windows and Macintosh operating systems as well
as Linux; however, prior to attempting any install it is important to make a simple distinction
first. R is a programming language, which means it is nothing more than a language you use
to communicate instructions to a computer. To communicate those instructions, some type of
interface is required. This is a basic reality that applies to any language. It is quite difficult to
communicate with someone if they have no mouth, eyes, or ears to send and receive communica-
tions with. Computers are no different in this respect. Simply “understanding” the language is
not sufficient. For this reason, most operating systems come equipped with a basic way of inter-
facing with the user via a command console2 of some kind. On computers using the Windows
operating system, this is referred to as the Command Prompt application, on Macintosh and Linux
computers this is the Terminal application. Relying on your operating system’s basic command
console application as a primary interface is often a cumbersome and inefficient experience, and
definitely not a recommended course of action - though, for what it is worth, Linux users seem to
delight in this sort of thing. The preferred means of communicating R to your computer is via the
use of what, in programming lingo, is commonly termed an “environment” or, more garrulously,
an “integrated development environment (IDE).” This is simply a software application pro-
viding the user with a more elegant visual workspace and feature set to make programming a
smoother experience.

2A windowed application that allows you to type instructions (a.k.a. “commands”) to your computer.

9 Installing and Running R on Your Computer

Figure 1.1: Base R installation environment,
featuring the default console interface for run-
ning R code and viewing outputs (left) and
the default scripting window (right) for writ-
ing, running, and saving R code.

The standard installation of R will come with an
associated environment for the user - provided they are
working with either a Windows or Macintosh operating
system (see Figure 1.1). However, while this environment
is preferable to the operating system’s basic command
console, most R users still find it lacking and opt to install
a different environment called RStudio, which has an
open-source (free) version for non-commercial use. An
image of the RStudio environment can be seen in Figure
1.2. RStudio is highly customisable in both appearance
and function and, consequently, can be tailored to each
users personal preferences. Figure 1.2 shows the default appearance upon first installation.

1.3.2 Installation

To install R - both the language and environment simultaneously - simply go to the R Project for
Statistical Computing website:

https://www.r-project.org/

Located on the front-page of this website should be a link labelled “CRAN”. This stands for
Comprehensive R Archive Network and is a set of servers around the world that distribute
R alongside packages associated with R. The servers are “mirrored,” meaning they all provide the
same content. So there is no need to worry about one server providing incomplete, out-of-date, or
unofficial versions of R. Technically speaking, the server closest to your home location is the one
you should opt to download from; however, the topmost link labeled “0-Cloud” will be sufficient
for most users. The install file is only about 80 megabytes large, so unless you live in the remotest
areas of Earth, download speed, and thus choice of server, is probably not a concern.

Once you have chosen a suitable server, you will need select your operating system and
choose the appropriate installation file. If you are using Linux, then you probably already know
what to do. If you are using Windows, opt to download the “base” version of R. If you are using
a Macintosh operating system, you will need to select the option relevant to your computer. At
the time of writing this, Macintosh computers have recently begun being manufactured using
their own in-house built processors (i.e., dubbed “Apple silicon”); however, many older Macintosh
computers (pre-2023) still contain Intel-made processors. The install file you select will need to
be determined by which type of processor your computer is using. Macintosh users can determine
this by selecting About This Mac via the small little apple logo in the top left corner of the desktop
screen. Machines using Apple silicon, will display a row called “Chip” and state something akin
to “Apple M1”. Machines using Intel processors will display a row reading “Processor” followed
by the make and model of the processor.

https://posit.co/
https://www.r-project.org/

1. Summoning Basics: An Introduction to R 10

Downloading and running the install file should prompt you with a installation wizard
that walks you through the installation process. Unless you are certain you know what you are
doing (which means you probably aren’t reading this), you should just accept the wizard’s default
settings.

Upon installation of R, you can then install the aforementioned RStudio environment at

https://posit.co/products/open-source/rstudio/

Installing RStudio is not strictly necessary to work through this book’s content; however,
the wealth of features and customization RStudio offers does makes it a worthwhile program to
install and is recommended for anyone reading this text. For Macintosh users, when you download
the install file for R studio there probably will not be an installation wizard, rather you likely be
prompted to “drag” an R studio icon into your applications folder. Once that is done, R studio is
installed.

1.3.3 Upgrading

There are updates made to R about two to three times a year and it is generally good practice
to upgrade regularly. There are various methods you can use to update R, but the most straight-
forward method is to just download the latest version of R as though you were installing it for
the first time and then re-install commonly used packages.3 If you follow the default setup, you
do not need to uninstall the previous version. In fact, it is usually preferable not to, as RStudio
allows you to easily switch between installed versions on your computer.

At the time of writing, R is on version 4.4.2, nicknamed the “Pile of Leaves” version. New
releases of R are given nicknames that, inexplicably, are all obscure references to Peanuts (a.k.a.
Charlie Brown and Snoopy) comic strips.

1.3.4 Consoles, Scripts, and Running R Code

The Console

Upon opening the base R environment you will be shown a pane labelled R Console. Opening
RStudio environment will show a similar pane simply labelled Console alongside a couple of others
(see Figure 1.2). The console pane functions as the command console described earlier (see section
1.3.1). Inside it you will see a “>.” This symbol denotes the command line’s prompt. In other
words, it denotes the space in which you type commands, using R code, to your computer. The
term “code” here is just a shorthand way of referring to “computer code” which is another way of
expressing the fact that we are typing commands using a programming language. The presence
of > also indicates that the computer is awaiting your command.

3Packages (also commonly referred to as “libraries”) will be explained later.

https://posit.co/products/open-source/rstudio/

11 Installing and Running R on Your Computer

Figure 1.2: Layout of RStudio. Each pane serves a specific purpose in writing, running, and managing R code. By
default the scripting pane (top left) is not shown and can be accessed by selecting File → New File → R Script.

If you type 1+1 on this line and the press “enter/return” on your keyboard, you should see
a 2 display as an output almost instantaneously beneath it. In this case the expression “1 + 1” is
a line of R code. Pressing enter/return, runs or executes this R code. The “2” is the computer’s
resulting output.

Input:

1 1 + 1

Output:

[1] 2

If you close R or RStudio, you will find that any history of this calculation is gone when you
re-open the environment. Consequently, typing commands into the console offers us a quick way
to perform simple tasks that we are not necessarily concerned with preserving. However, in most
cases we will be typing R code that we do want to preserve, run, edit, and add to at later date.
This is where the concept of a script becomes important.

The Script

A script is simply a text document on your computer that you can use to type, run, edit, and save
your R code. Using the base R environment, selecting the File menu at the top left corner and

1. Summoning Basics: An Introduction to R 12

choosing New Script, will open a script pane. In R Studio the process is File → New File → R
Script.

Once opened, you can type R code into this new pane and save it in the conventional manner
of most word processing applications (i.e., File → Save As). Additionally, this pane permits you
to run lines of code selectively or all together. For instance, if you type the following into the
script pane ...

1 1 + 1

2 2 + 2

3 3 + 3

You can now place your cursor at a line of your choosing and run that line individually. To
do this in the base R environment you select Edit → Run Line or Selection. In RStudio you select
Code → Run Selected Line(s) or click the “run” icon in the upper right of the script window. If
you highlight all the lines of code, or just a subset of them, you can then run that highlighted
section in a similar manner.

1.3.5 Keyboard Shortcuts

It is at this juncture that a noteworthy feature of programming environments be mentioned;
specifically, keyboard shortcuts (also called “hotkeys”). All robust programming environments
equip users with the ability to perform virtually any non-typing task directly from the keyboard,
increasing efficiency and comfort. For instance, if you are using the Windows operating system,
pressing the “control” key simultaneously with the “s” key will save your script file (Ctrl + S).
Learning the shortcuts for frequently used features, such as selecting and running lines of code,
will make the process of writing code considerably more time efficient and effortless. In theory,
a good programmer - using a competently developed coding environment - should never require
the use of a mouse. RStudio, in particular, offers a wide range of keyboard shortcuts that can
be customized to user preferences. For instance, selecting Help → Keyboard Shortcuts Help will
display a list of existing shortcuts that users can avail themselves of. Please note, it is not being
suggested that you go out of your way to memorize all of these at once. The simple act of trying
to use them consistently will be sufficient to learn them in an effortless manner. At the outset, it
is to your advantage to merely select a few and attempt to use them consistently while you code.
A few of the most useful ones are listed in Table 1.1.4

4Shortcuts 3, 4, and 5 can be combined with shortcut 6 to highlight bigger sections of code.

13 How To Code Using R: The Fundamentals

Description Windows Macintosh

Run current line/section Ctrl + Enter Cmd + Return
Clear Console Ctrl + L Ctrl + L
Move to the beginning of a line Home Cmd + Left
Move to the end of a line End Cmd + Right
Move the cursor one word/block at a time Ctrl + Left or Right Option + Left or Right
Highlight all Ctrl + A Cmd + A
Highlight sections Shift + Up, Down, Left, or Right Shift + Up, Down, Left, or Right
Move cursor to script window Ctrl + 1 Ctrl + 1
Move cursor to console window Ctrl + 2 Ctrl + 2
Type the <- operator Alt + - (minus) Option + - (minus)

Table 1.1: Useful Keyboard Shortcuts

1.4 How To Code Using R: The Fundamentals

With the formalities of installation, console, and scripting window out of the way, we can now start
to learn how to write (i.e. code) using the language called R. Though, it is at this juncture that
some advice to novice programmers be offered. Nothing that will be discussed in this section, or
any section of this text concerning R code, is material you need to go out of your way to memorize.
R is a language, and the basic act of trying to use the language consistently will result in a natural
and effortless memorization over time. Along these lines, there are some basic recommendations
novice programmers can follow to expedite this:

• Do not use your computer’s copy and paste functions. Type all code yourself.

• Run all the examples in this textbook and try and produce the same results.

• If you do not know how to do some particular thing, then look up how to do it each time
you need to do it. Memorization will happen effortlessly over time.

• Stay organized - this applies to the code you write and the files you save.

• Pledge to do all your stats from this point forward using R. Immerse yourself in the language.

Everything discussed here is done so for the purpose of acquainting you with the R language so
that, when you see some R code, you are not compelled into some manner of zombiesque torpor.
As you move through the text, you will learn more advanced things and have much of this material
repeated and re-explained. Your goal in this chapter is not to become an R expert, but rather to
get an intuitive grasp of R’s underlying syntax and logic.

1. Summoning Basics: An Introduction to R 14

Box 1.1: Are you using your keyboard properly?

When utilizing the keyboard shortcuts mentioned in section 1.3.5, it is worth remembering that

standard QWERTY-style keyboards are symmetrically designed. Modifier keys like the shift

key, control key, and alt key are located on both the left and right side of the board. This is not

by accident and many people - even those who have grown up with unprecedented access to

computers and the internet - have never learned to appreciate the utility of this layout or use it

appropriately.

As an example, to type capital letters you should always depress the shift key on the oppo-

site side of the keyboard to the letter. So, if you desired to type the capital letter Q, you would

depress the right shift key with your right hand, and type Q with your left hand. A similar logic

applies to the other modifier keys. To use keyboard shortcut #9 in Table 1.1, you would de-

press the right control key (with your right hand) and use your left hand to press the 2 key. You

should not be trying to press both keys with a single hand. Such advice might seem obvious but,

given the sheer number of people who contort their wrists and fingers in grotesquely strange

and painful ways, it is clearly far from being so.

1.4.1 Basic Arithmetic

At its core R is really nothing more than a powerful calculator, and we can use it as such. R can
be used to add (+), subtract (−), multiply (×), and divide (÷).

1 666 + 13

2 13 - 666

3 9 * 27

4 666 / 9

[1] 679

[1] -653

[1] 243

[1] 74

Exponents can be incorporated as well by using the ∧ (‘caret’), symbol. For instance, the
expression 93 can be written as ...

1 9^3

[1] 729

R will also follow the ritualistic order of operations when dealing with more complex expres-
sions. To illustrate, consider the mathematical statement 8 ÷ 2(2 + 2). Some people mistakenly

15 How To Code Using R: The Fundamentals

believe that this expression is equal to 1, some believe it is equal to 4, and others believe that it
is improperly written and there is no solution. In fact, it is equal to 16. As many will no doubt
have learned in their primary education, according to order of operations (BEDMAS5), the order
in which you divide and multiply inside the equation is not fixed, sometimes you divide first and
sometimes you multiply first. However, what most people never learn is that the order you use
is not up to you. You must always calculate from left to right when making a choice between
multiplication and division. The same rule applies to addition and subtraction.

1 8/2*(2+2)

[1] 16

If we re-write the equation to be 8÷(2+2)2, you will see a corresponding change in the computer’s
output.

1 8/(2+2)*2

[1] 4

R also has the ability to perform Euclidean Division, which many may recall from their
long suffering days in primary education days as simply division with a remainder. For instance,
consider 11÷ 2. Conventionally, you would want and expect an answer of 5.5, and R will produce
that.

1 11/2

[1] 5.5

However, if we want to see the result expressed as a quotient and remainder (i.e., if we want to
use Euclidean Division), we could obtain the quotient by typing ...

1 11 %/% 2

[1] 5

To obtain the remainder we type...

1 11 %% 2

[1] 1

Thus, 11 can be split into 2 groups of 5, with 1 left over. More technically, the %% is what
is known as the modulo operator and the remainder value of 1 that results from 11 %% 2 is
known as the modulus.

5BEDMAS of course being the famous mnemonic to help memorize the order of operations: Brackets, Exponents,
Division, Multiplication, Addition, and Subtraction. Many non-Canadian readers may be more familiar with the
inferior variants of this mnemonic, PEDMAS and PEMDAS.

1. Summoning Basics: An Introduction to R 16

Other, more complex, arithmetic operations are available in the R language; however, most
of them will require the use of specialized lines of code called functions, which are discussed later
(see section 1.4.7).

Given that we are on the topic of basic arithmetic, it is perhaps worth considering what
happens when you “break the rules” of basic arithmetic. Suppose we divide a positive and negative
value by zero, what will happen?

1 1/0

2 -1/0

[1] Inf

[1] -Inf

You can see that R produces a result of Inf and -Inf which is an abbreviated way of referring
to infinity in the positive and negative directions respectively.6

What happens if you take the square root of a negative number?7

1 (-4)^(1/2)

[1] NaN

The abbreviation NaN here stands for “not a number,” and is a fairly sensible output given
that the square root of a negative number does not exist as a real number (consequently, it only
exists in your imagination).

Finally, since its use crops up from time to time, it can be handy to know that R comes
with the number π stored as a constant. To use it, you need only type pi .8

1 pi

[1] 3.141593

6This will also be generated if a number is too large for a computer to cope with. For example, the code
.Machine$double.xmax will produce the largest number your computer can handle. R will technically still let you

add values to this number, but the number won’t change from R’s perspective because the amount you would have
to add to alter what is shown is excessively large. However, if you multiply it by 2, you should get Inf .

7Recall that exponents can be used to take the square-root of a number. For example,
√
4 can be expressed as

4
1
2 .

8If you find π displayed to seven digits inadequate, you may want to talk to a professionally licensed therapist.
Alternatively, you can display more digits by running the code print(pi, digits = 16) . Values exceeding 16
digits will be inaccurate given the limitations of 64-bit computers, so it is advisable not to go beyond 16 even though
a max of 22 are possible. If you want R to always display all 16 digits, you can change its default behaviour by
running options(digits = 16) , though this is not recommended.

17 How To Code Using R: The Fundamentals

1.4.2 Understanding Scientific Notation

On occasion values will be either excessively large or excessively small. In such cases R will often
display the values using what is referred to as scientific notation. For instance, dividing the
number 2 by 100000 will result in scientific notation being employed:

1 2 / 100000

[1] 2e-05

Notice the e-05 in the output. This is how you know R is presenting a number using
scientific notation. To interpret this in a conventional manner, imagine there is a decimal point
after the 2, like so: 2.0e-05 . Then just move that decimal point five digits to the left. In other
words, 2e-05 is the same as writing 0.00002 . Mathematically, 2e-05 translates to 2× 10−5

If the output were showing e+5 , then you would move the decimal five digits to the right.
For example, 2e+5 is the same as writing 200000 . Notice there are five 0s; this is because,
mathematically, 1e+5 means 2× 105

Remember that positive powers move the decimal right (in the positive direction), and
negative powers move the decimal left (in the negative direction).

1.4.3 Commenting Out Lines

In the course of writing R code, there will be occasions where you would like to run a script you
have typed up, but not necessarily run every single line on that script. There might be certain
lines that you would, at least tentatively, like to keep for one reason or another but not necessarily
run. You can accomplish this by “commenting out” your code. If you type a # symbol, any code
that follows that symbol and is on the same line as that symbol will not be run.

1 1 + 1

2 # 2 + 2

3 3 + 3

[1] 2

[1] 6

1 1 + 2 + 3 # + 4 + 5

[1] 6

This process is phrased “commenting out” because using the # is also frequently employed to
write short helpful comments to yourself and other readers about your R script.

1. Summoning Basics: An Introduction to R 18

1.4.4 Creating Objects

A central feature of R is its ability to call objects in memory. For instance, we can define an object
name, x , and have that name represent a number by typing a little arrow, <- , and following it
with a value such as 1.

1 x <- 1

You will find that running this line of code produces no corresponding output. However, if
we now run x by itself the computer will display an output of 1.

1 x

[1] 1

R is technically classified as an object-oriented programming language (an “OOP”). This is
because, if you look into how R actually stores what we have done in memory, the “object” here
is the number 1. x is merely the name we are assigning to that object. However, a lot of R
users are under the impression that the reverse is true - i.e., that we have in some sense created
an object called x and stored something inside of it, but that is not actually the case. x is just
a name binded to the object 1, and this object 1 is located somewhere inside your computer’s
memory. Admittedly, unless you are doing some seriously advanced R programming, this is a
distinction that will not matter to most R users, but it is important because it means that if you
do something like this . . .

1 x <- 1

2 y <- 1

x and y are technically different objects in the computer’s memory. However, if we did this

1 y <- x

they now represent the same object in memory. Moreover, altering one does not affect the other
and just ends up creating two separate objects in memory. E.g. ...

1 x <- x + 1

2 x

3 y

[1] 2

[1] 1

The “Environment” pane in R studio will show you the complete list of objects presently
loaded in memory. The pane can be displayed by selecting the “View” menu and selecting “Show
Environment” or pressing Ctrl + 8 on your keyboard.

19 How To Code Using R: The Fundamentals

To assign the names x and y we typed an arrow, <- . Alternatively, we could have
assigned the names using an equal sign (=) instead.

1 y = x + 4

2 y

[1] 6

Both <- and = , in the manner we are using them here, are what are referred to as
assignment operators in that, they are used to perform the operation of assigning a name to
an object. For most use cases, there is no practical difference between the two; except insofar as
the arrow can be swapped around to assign values to objects like so.

1 10 -> z

2 z

[1] 10

The existence of both = and <- as assignment operators raises an obvious question: which
is better to use? This is a question for which there are strong opinions and Appendix A walks
through the trivial dispute for those interested.9

Object Modes

Thus far all of the objects we have created have been numeric objects; though, we can avail
ourselves of other types. For instance, another common object is the character object which gets
defined using quotation marks on each end of the value.

1 x <- "SPAM"

2 x

[1] "SPAM"

Both single or double quotation marks can be used to define a character object. For instance,
running ...

1 y <- 'SPAM'

2 y

[1] "SPAM"

works just fine, but if you were to mix and match the two types of quotation marks (e.g., try to
run y <- "SPAM'), you will find that no actual output is produced, and the console just displays
the code you tried to run with a small + appended to it. The + indicates that the line of code

9TL;DR: While code written using = tends to have an intuitive appeal and requires one less key to press, the
<- has greater functionality and is generally preferred by R’s anointed high council (overseers of Tidyverse) for
that reason. If you opt to use <- , it is worth noting that RStudio contains a keyboard shortcut that offers a more
ergonomic means of typing <- by pressing the alt key followed by a minus (-) sign.

1. Summoning Basics: An Introduction to R 20

is incomplete and more is expected before an output can be returned. If this happens you need
only press the escape key (esc) with your cursor inside the console window.

A key consideration about character objects, which will probably seem obvious, is that you
cannot perform standard mathematical operations on them.

1 y * 5

Error in y * 5 : non-numeric argument to binary operator

1 2 + "2"

Error in 2 + '2' : non-numeric argument to binary operator

Another type of object is what is known as a logical object. This is an object that contains
a value of TRUE or FALSE and is often referred to as a boolean object.

1 x <- TRUE

2 y <- FALSE

3 x

4 y

[1] TRUE

[1] FALSE

The values TRUE and FALSE must be typed completely in uppercase without quotations
for R to recognize them as a logical object. Alternatively, R does permit a shorthand version of
each. Instead of typing TRUE and FALSE , you can type T and F respectively. Though, for ease
of reading, using this shorthand version is not advised.

Thus far, we have demonstrated three basic categories of object: numeric, character, and
logical. R refers to these various categories as modes,10 and as you progress with R, both in this
book and more generally, you will encounter other object modes.

Naming Objects

Oftentimes we will run into circumstances where other people are required to read, run, and modify
the code we write. Still other times, we may need to look at, and make sense of, code we have
written in the past and largely forgotten. These considerations make it of the utmost importance
that all of the code we write is intelligible to other people and our future selves. Among the best
way to achieve this is by naming objects appropriately. Ideally, the name of an object should be
concise and descriptive. Generally, you can name objects almost anything you like, as long as the

10You may sometimes hear these referred to as object “classes” as well. The distinction between modes and
classes in R is nuanced, with considerable overlap between the two terms; though, they are not perfectly equivalent.
I have chosen to refer to object modes because it more consistently categorizes objects as numeric, character, or
logical, which I believe is helpful for beginners learning R.

21 How To Code Using R: The Fundamentals

name begins with a letter, contains no spaces, avoids special characters (except underscores _),
and does not use any of R’s reserved words such as TRUE , Inf , NaN , function , etc.

Given that spaces are not permitted in the naming of objects, programmers have developed
certain conventions to promote readability. One such convention is snake case, which separates
lowercase lettered words with an underscore:

1 snake_case <- 1

Another, referred to as camel case, denotes separate words by capitalizing the first letter of each
new word:

1 camelCase <- 2

There is also period case:

1 period.case <- 3

There is random case (Wickham et al., 2023):

1 Ra.nD0M_CAs.e <- 4

Finally, there is of course angry case for those moments when you need to communicate your
frustration with coding:

1 ANGRYCASE <- 5

Apart from the last two, R programmers tend to use all of these with seeming abandon. It is
worth noting that different style guides for R have been developed and altered over the years with
varying degrees of adoption. Presently there is no consensus on which style-guide should act in
an official capacity for R; however, the most popular, and widely respected, is the Tidyverse Style
Guide11 (https://style.tidyverse.org) which advocates the strict and concise use of snake_case
only.

When it comes to naming objects, all of the rules just laid out only apply to what are
referred to as syntactic names; however, if villainy is more your style, you can gleefully ignore
all of those rules and conjure up what are called non-syntactic names by simply enclosing the
name within backticks.

1 `420 * 69` <- "PARTY TIME!"

2 `The devil made me do it!` <- "Hail Satan"

11The tidyverse will be explained in the next chapter, just know that all the code written in this book will (do
its best) to adhere to its standards.

https://style.tidyverse.org

1. Summoning Basics: An Introduction to R 22

1.4.5 Vectors

It is not the case that an object need store only a single value, as we have been doing above.
Particularly when conducting statistical analyses, you are almost always working with variables
that contain more than one value (i.e. multiple observations). In view of this, R objects can store
as many values as you require.12 For instance, if we want x to be equal to the numbers 1 through
5, we need only type:

1 x <- c(1, 2, 3, 4, 5)

2 x

[1] 1 2 3 4 5

The lower case c is short for combine. By combining the numbers 1 through 5 in this way we
have created what is technically known as a vector.13 We can further use this combine function,
c() , to combine vectors with other vectors. In the example below, we create two vectors, x and
y , and combine them to create an object called z .

1 x <- c(1, 2, 3, 4, 5)

2 y <- c(6, 7, 8, 9, 10)

3 z <- c(x, y)

4 z

[1] 1 2 3 4 5 6 7 8 9 10

Box 1.2: How to Use Your Colon Effectively

In the previous examples, we used R’s combine function to create a basic set of ascending
numbers. The need to generate regular sequences of integers is a common occurrence
in data analyses, so R provides users with a convenient means to create them using the
colon operator (:).

1 x <- 1:5

2 x

[1] 1 2 3 4 5

This can also be used in reverse and with negative values.

1 3 : -5

[1] 3 2 1 0 -1 -2 -3 -4 -5

12Obviously, this statement is only true given the memory limitations of your computer’s hardware and software.
13More specifically, we are speaking of atomic vectors here, though most people just call them vectors.

23 How To Code Using R: The Fundamentals

The concept of a vector is one which will have relevance to people with a fondness of linear
and matrix algebra14 since it amounts to little more than a one-dimensional array/matrix. We can
see how R handles vectors for these purposes by simply performing some mathematical operations
on them. For instance, if we add a single number to our vector, we can see that R straightforwardly
adds that number to each element (i.e. position) in the vector.

1 x + 2

[1] 3 4 5 6 7

Correspondingly:

1 x - 2

2 x * 2

3 x / 2

4 x^2

[1] -1 0 1 2 3

[1] 2 4 6 8 10

[1] 0.5 1.0 1.5 2.0 2.5

[1] 1 4 9 16 25

A similarly logical process is seen when we perform mathematical operations on two or more
vectors of the same size. For instance, adding them together results in the first element of one
being added to the first element of the other. The second element of one being added to the second
element of the other, and so on.

1 x <- c(1,2,3,4,5)

2 y <- c(6,7,8,9,10)

3

4 x + y

[1] 7 9 11 13 15

However, a curious thing will occur if the vectors have an unequal number of elements greater
than 1. Suppose, as an example, one vector has four elements and another has five and we want
to add them together. In the process of adding the first element with the first element, and the
second element with the second, and so on, R will automatically loop back around to the first
element in the shorter vector to complete the calculation; though, it does this only after giving you
a warning. Needless to say, you should not be performing any arithmetic on vectors of unequal
lengths.

14While I assume such people must exist, their existence is about as well-confirmed as that of the Sasquatch.

1. Summoning Basics: An Introduction to R 24

1 x <- c(1,2,3,4)

2 y <- c(6,7,8,9,10)

3 x + y

Warning in x + y: longer object length is not a multiple

of shorter object length

[1] 7 9 11 13 11

Vectors are also not limited to numbers. They can also contain character values and logical
values.

1 a <- c(1,2,3)

2 b <- c("BREAD", "SPAM", "BREAD")

3 c <- c(TRUE, FALSE, FALSE)

4

5 a

6 b

7 c

[1] 1 2 3

[1] "BREAD" "SPAM" "BREAD"

[1] TRUE FALSE FALSE

However, you cannot mix and match. For instance, if you have a character string amongst a set
of numeric values, those numeric values will all be converted to character strings as evidenced by
the quotation marks in the output.15

1 d <- c(5, "SPAM", 6, 7, 8)

2 d

[1] "5" "SPAM" "6" "7" "8"

If you have logical values amongst a set of numeric values, those logical values will be transformed
such that TRUE = 1 and FALSE = 0 , making the entire vector numeric.

1 e <- c(666, TRUE, FALSE)

2 e

[1] 666 1 0

In fact if you have an entire vector of logical values you can treat the TRUE and FALSE values
as 1s and 0s respectively. This is a feature of logical vectors that frequently comes in handy.

15You can also check the vector’s mode by running mode(d)

25 How To Code Using R: The Fundamentals

1 x <- c(100)

2 g <- c(TRUE, TRUE, FALSE, FALSE, TRUE)

3 x + g

[1] 101 101 100 100 101

Similar to how R comes with π (pi) stored as a constant, it also has constants for a few
commonly used character vectors.

1 LETTERS

2 letters

3 month.name

4 month.abb

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"

[14] "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m"

[14] "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

[1] "January" "February" "March" "April"

[5] "May" "June" "July" "August"

[9] "September" "October" "November" "December"

[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[10] "Oct" "Nov" "Dec"

Indexing Vectors

Notice in the previous example’s output that the numbers within brackets indicate the position
number of a element in the vector. For example, in the vector LETTERS , "N" is located in the
14th position. In the vector month.name , "May" is in the 5th position. Every new line written
to the console screen gives the position number of the first element on the line - meaning that the
size of your console screen will effect which position numbers get displayed (so you might have
different values that what is shown above).

It is not by accident that these positions are demarcated using square brackets. Square
brackets serve a special purpose in R. They allow us to subset values by referencing their position
in the vector. For instance, if we want to know what the 17th letter of the English alphabet is, we
need only type...

1 LETTERS[17]

[1] "Q"

1. Summoning Basics: An Introduction to R 26

If we want to list out the first 5 letters we can simply insert a numeric vector...

1 LETTERS[c(1, 2, 3, 4, 5)]

[1] "A" "B" "C" "D" "E"

By contrast, if we want to list out all of the letters, except the first five (i.e., exclude the first five),
we can include a minus sign in front of the combine symbol.

1 LETTERS[-c(1, 2, 3, 4, 5)]

[1] "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R"

[14] "S" "T" "U" "V" "W" "X" "Y" "Z"

The use of vectors inside the indexing brackets allows us to select any position we want. For
instance, if we wanted to examine the 2nd, 3rd, 5th, 7th, 11th, 13th, 17th, 19th, and 23rd numbers
(all prime numbers), we can create a vector of those values and simply insert it into the index.

1 primes <- c(2, 3, 5, 7, 11, 13, 17, 19, 23)

2 LETTERS[primes]

[1] "B" "C" "E" "G" "K" "M" "Q" "S" "W"

Somewhat uniquely, within the R programming language every single basic data object—such
as a number, character string, or logical value—is inherently a vector. For example, the number
666 is a vector, the character string "SPAM" is a vector, and the logical value FALSE is also a
vector. These are simply vectors with a single element, or a length of 1. As such, all of these can
be indexed just like any other vector with a length greater than 1.

1 666[1]

2 666[2]

3 "SPAM"[1]

4 FALSE[1]

[1] 666

[1] NA

[1] "SPAM"

[1] FALSE

Notice in the second line above that when 666 was indexed at position 2, R returned
NA because no value exists at that position. The moral of the story is that, when the combine
function, c() , is used, you are not creating a vector, but rather combining vectors.

27 How To Code Using R: The Fundamentals

Type Operator Description

Assignment x <- value Assign a value to a name.
value -> x Assign a value to a name.
x <<- value (see Appendix A)
value ->> x (see Appendix A)
x = value Assign a value to a name.

Arithmetic x + y Adds values of objects
x - y Subtracts values of objects
x * y Multiplies the value of objects
x / y Divides the value of objects
x ^ y Raises the value of one object to another
x %% y Returns the quotient of objects
x %/% y Returns the remainder of objects

Relational x < y Checks if x is less than y
x > y Checks if x is greater than y
x <= y Checks if x is less than or equal to y
x >= y Checks if x is greater than or equal to y
x == y Checks if x is equal to y
x != y Checks if x is not equal to y

Table 1.2: Basic R Operators

1.4.6 Operators And Comparison Statements

Symbols in R such as <- , + , - , and so on are referred to as operators because they are used to
perform “operations” such as assigning a name to an object, adding numbers together, etc. Table
1.2 shows a list of some common operators in R that we have seen before and some new ones
called relational operators. These are operators that evaluate a comparison of some kind. For
instance, you can evaluate whether one value is greater than or less than another value.

1 3 > pi

[1] FALSE

In the above example, the statement “three is greater than π”, is a false statement. In the example
below, the statement “three is less than π”, is a true statement.

1 3 < pi

[1] TRUE

In a similar fashion, you can also evaluate whether a value is greater than or equal to some other
value. For example:

1. Summoning Basics: An Introduction to R 28

1 pi >= pi

[1] TRUE

Alternatively, you might choose to evaluate whether a value is less than OR equal to some other
value

1 pi <= 3

[1] FALSE

You can also evaluate whether two values are equivalent or not equivalent, by using the symbols
== and != respectively.

1 pi == pi #testing if equivalent

2 pi == (22/7)

3 pi != (22/7) #testing if NOT (!) equivalent

[1] TRUE

[1] FALSE

[1] TRUE

1.4.7 Functions

In conventional mathematics a function is a way of relating an input to an output (Pierce, 2022).
Typically this is notated as

f(input) = output (1.1)

When you place something inside the left parentheses, there is a corresponding output. The use
of f here to denote the function is just a formality mathematicians have adopted. A function can
be named or symbolized with anything.

As an example of a function’s use, we could create one that outputs the square root of a
number.

f(x) =
√
x (1.2)

In this case, x is just acting as a place holder; thus, swapping the x inside of f() with a real number
will give us a corresponding output by taking the square root of that number. For example, if we
insert the number 25 into the function:

29 How To Code Using R: The Fundamentals

f(25) =
√
25

= 5
(1.3)

Functions in R work identically to this. For instance, R has a function for finding the square
root of a number, except instead of naming the function f(x), it names the function sqrt(x) .

1 sqrt(25)

[1] 5

And, rather conveniently, R will also store the output of a function as an object if you ask it to.

1 x <- sqrt(25)

2 x

[1] 5

As you might expect, given its lineage as a tool for data analysis, R has many such functions.
Examples of some of the more common, self-explanatory ones can be seen below. For each we will
insert a vector containing the values one through five.16

1 x <- c(1, 2, 3, 4, 5)

Calculating the sum of all the values:

1 sum(x)

[1] 15

Calculating the product of all the values:

1 prod(x)

[1] 120

Calculating the minimum and maximum of all the values:

1 min(x)

2 max(x)

[1] 1

[1] 5

16It’s perhaps worth pointing out that the small c we use to combine values into a vector is also a function,
which is why it is always followed with parentheses, c()

1. Summoning Basics: An Introduction to R 30

Calculating the length (i.e., number of elements) of a vector:

1 length(x)

[1] 5

Calculating the mean of all the values:

1 mean(x)

[1] 3

Calculating the median of all the values:

1 median(x)

[1] 3

Functions are not limited to just mathematical processes either. For instance, R has a
function to tell us what an object’s mode is, thus allowing us to determine if the vector consists
of numeric, character, or logical values.17

1 mode(x)

[1] "numeric"

Arguments

The utility of functions in R actually extends far beyond this basic usage because most are easily
modified through the use of arguments. An “argument” is simply a parameter that allows you
to customize how a function operates. A simple example of this is the round() function. This is
used to round numbers to a specified decimal place. For instance, if we have a vector that contains
both the number π and the

√
2

1 x <- c(pi, sqrt(2))

2 x

[1] 3.141593 1.414214

We can use the round() function and its “digits” argument to round these to 2 digits.

1 round(x, digits = 2)

[1] 3.14 1.41

17Do not confuse this with the mathematical concept of a modal value; i.e., the number that appears most often.

31 How To Code Using R: The Fundamentals

Alternatively, we could round to the nearest integer:

1 round(x, digits = 0)

[1] 3 1

Critically, in the above two examples, we have specified the digits argument using an
= sign. Generally speaking, this is the best practice and original purpose of = because, while
you are permitted to use the assignment operator <- in place of this, doing so will store an
object called digits unnecessarily, wasting your computers resources and cluttering R’s working
environment.

The round() function only takes one argument but many functions take multiple argu-
ments. A good example of this is the sequence function, seq() , which generates regular number
sequences. For instance, if you wanted to generate a sequence from 0 to 100, counting by 2’s, there
are three arguments you will need to set: from , to , and by :

1 seq(from = 0, to = 100, by = 2)

[1] 0 2 4 6 8 10 12 14 16 18 20 22 24

[14] 26 28 30 32 34 36 38 40 42 44 46 48 50

[27] 52 54 56 58 60 62 64 66 68 70 72 74 76

[40] 78 80 82 84 86 88 90 92 94 96 98 100

The sequence function is also illustrative of another feature of functions, often they will
have mutually exclusive arguments. Instead of using the by argument, we could have used the
length.out argument to specify how many values we want in our sequence.

1 seq(from = 0, to = 100, length.out = 6)

[1] 0 20 40 60 80 100

To save yourself some effort in typing out functions and their corresponding arguments, you
can actually just provide the values, without the argument name and equal sign, provided you
specify the arguments in the correct order.

1 seq(0, 100, 2)

[1] 0 2 4 6 8 10 12 14 16 18 20 22 24

[14] 26 28 30 32 34 36 38 40 42 44 46 48 50

[27] 52 54 56 58 60 62 64 66 68 70 72 74 76

[40] 78 80 82 84 86 88 90 92 94 96 98 100

To determine the correct ordering of arguments you will need to consult the function’s R docu-
mentation.

1. Summoning Basics: An Introduction to R 32

1.4.8 R (Help) Documentation

R includes a vast array of built-in functions, some of which perform highly complex tasks. Conse-
quently, when reading R code, you will often encounter functions whose purpose and usage seem
mysterious. To demystify these functions, it is often necessary to consult R’s help documentation.
Each function in the base version of R comes with corresponding documentation that outlines
its purpose, explains its arguments, and provides references. While R’s documentation can often
be challenging to interpret for novice users, it should always be your first resource when you are
unsure about how a function works or what it does. Only after consulting the help documentation
should you turn to additional resources, such as internet searches or forums.

To access the documentation for any function in R, simply precede the function name with
a question mark and run it in the R console. For example, running ?mean will bring up the
documentation for the arithmetic mean function.

1 ?mean

If you are using RStudio, the documentation will likely appear in the lower right quadrant of
RStudio’s display. If you are using the base R environment, you can expect the documentation to
appear in your default web browser.

All R documentation follows a consistent structure, designed to provide users with a com-
prehensive understanding of each function. At the top, you will find the name of the function
along with the name of the package it belongs to, enclosed in braces. For example, consulting
the documentation for the mean() function displays “mean {base}” at the top, indicating that
this function is part of base R. Similarly, for other common functions like sd() , you might see
“{stats}” listed. The stats package, included with R, contains functions for statistical calculations
and random number generation, provided by the R Core Team alongside base R functions.

Beneath the function name and package, you will find a brief Description section outlining
the function’s purpose. This is typically followed by a Usage section, which includes a code block
demonstrating how the function is used and detailing its arguments. For instance, documentation
for the mean() function includes the following usage:

1 mean(x, ...)

2

3 ## Default S3 method:

4 mean(x, trim = 0, na.rm = FALSE, ...)

The topmost line of the code block, mean(x, ...) , represents the minimal working example
for the function. This indicates that, at a minimum, the argument x must be provided for the
function to work. The Arguments section below the code block provides further details about x .
Specifically, it states that x is “an R object. Currently, there are methods for numeric/logical

33 How To Code Using R: The Fundamentals

vectors and date, date-time, and time interval objects...” In simpler terms, this is saying that x

should be a numeric or logical object and not, for instance, a character object. For example:

1 nums <- 0:666

2 mean(x = nums)

[1] 333

In this case, nums , a numeric vector, is the R object provided to the argument x .

Beneath the minimal working example in the Usage block is a line of code displaying the
various additional arguments the function has: trim and na.rm . These arguments are optional
because they come with default values, meaning they do not need to be explicitly set by the user,
unlike the required argument x .

Further down, the documentation includes a Value section, which describes the output of
the function based on the arguments provided and the data types used. Finally, the documen-
tation concludes with additional details references, supplemental links, and practical examples to
demonstrate the function’s usage in real-world scenarios.

1.4.9 Missing Values

A common hurdle in data analysis are missing values. Values can be missing for any number of
reasons; perhaps a participant never showed up for a research session, perhaps an lab animal died,
perhaps there was a equipment malfunction, perhaps someone recorded something incorrectly, or
maybe you just ran out of time and money. The R language denotes missing values using NA ,
which stands for “not available.” In many instances, numerical calculations on a NA value will
simply result in another NA value.

1 5 + NA

[1] NA

Intuitively, this behaviour makes a fair amount of sense to most people. We do not know
what NA is or should be, so the expression 5 + NA cannot be evaluated. And R, quite logically,
extends this principle to functions:

1 x <- c(710, 633, 786, NA, 642)

2 mean(x)

[1] NA

However, in this latter case, the logic which seemed so obvious initially seems less so now.
Consider that these values might be observations from an experiment. Many researchers will
reflexively ignore the NA and compute the mean of these values as readily as a rat devours a food
pellet, and it is to R’s credit that it actually prohibits its users from indulging so recklessly.

1. Summoning Basics: An Introduction to R 34

How missing values should be handled is a matter of great importance and statisticians
often disagree on what the best practice should be in any given case. In a situation like this,
most people would simply ignore the missing element and treat the vector as containing only four
values. However, most data sets are not this simplistic. That NA might be paired with collected
observations of other variables. That is a situation where you might, for the purpose of conducting
a certain analysis, require a number to be in that fourth spot. What do you do then? Do you
replace NA with the mean of the four values, do you replace it with the median, or do you do
something else?

There is no one-size-fits-all answer here; however, in those instances where simply ignoring
the NA is the sensible course of action, many base R functions allow you to specify an additional
logical argument, na.rm , that will remove any NA values prior to calculation. You can see this by
simply accessing the R documentation (e.g., ?mean). By default the argument is set to FALSE

and setting na.rm = TRUE will remove the NA values accordingly.

1 mean(x, na.rm = TRUE)

[1] 692.75

For situations where a function does not have a na.rm argument or equivalent, the function
is.na() can be easily employed. This function evaluates whether each element of an R object
is missing or not and returns a logical (TRUE or FALSE) value. For example:

1 x <- c(710, 633, 786, NA, 642)

2 is.na(x)

[1] FALSE FALSE FALSE TRUE FALSE

Looking at the output, we can see that the fourth value is missing because it has returned a
value of TRUE (i.e., the function has determined that it is a NA value). Combing the behaviour
of this function with the indexing feature of vectors (see section 1.4.5) and a logical operator
called the negation operator (denoted using !), we can easily obtain a version of the vector
with missing values excluded.

1 x[!is.na(x)]

[1] 710 633 786 642

With the negation operator, the expression !is.na(x) can be interpreted as asking, “which
values of x are not missing values?” This is easily seen by comparing the is.na() function
with and without the negation.

1 is.na(x)

2 !is.na(x)

[1] FALSE FALSE FALSE TRUE FALSE

[1] TRUE TRUE TRUE FALSE TRUE

35 How To Code Using R: The Fundamentals

Notice that the ! just provides the logical opposite (i.e., negation) of the original function.
Thus, putting all this together, you could write ...

1 mean(x[!is.na(x)])

[1] 692.75

...in lieu of using or not having a na.rm style argument to remove missing values. To novice
users of R, techniques like this may seem cumbersome initially. This is especially the case when
you are dealing with so few values and can immediately see what is and is not missing within
the data. For instance, noting that the fourth value is missing from x , you could simply create
a new vector of the form y <- c(710, 633, 786, 642) and insert that into your functions.
However, many (if not most) data sets are too large to “eyeball” and manually rebuild in this way.
Automated solutions like those shown with the negation operator are not only necessary to save
time, but are also less prone to error.

1.4.10 Data Frames

While there are situations where a single vector constitutes the only data that needs to be analyzed,
it is more often the case that you are working with “sets” of data. That is to say, typically your
data consists of observations across a range of different variables. Consequently, for the purposes
of organization, it is helpful to keep all of this data stored as a single object. In R, there are a
number of ways you could do this. You could store data as a table, a list, or a matrix which are
all unique classes of objects R recognizes. However, for most uses cases, a data frame is going
to be the preferred method of data storage in R.

In its simplest terms a data frame is simply a spreadsheet, where rows represent observations
and columns represent variables. Consider a hypothetical experiment with two groups, a control
and experimental group, and 10 observations, one of which is missing for some reason. Visually,
the data might look like Table 1.3:

Subject Group Value

1 Exp -0.36
2 Cont 0.28
3 Exp 1.54
4 Cont 0.51
5 Exp -1.28
6 Exp 1.15
7 Cont 3.78
8 Exp -0.51
9 Cont NA
10 Cont -1.04

Table 1.3: Example Data Frame

1. Summoning Basics: An Introduction to R 36

We can easily recreate this in R using the data.frame() function. Inside the function, we specify
our desired columns as arguments.

1 df <- data.frame(

2 Subject = 1:10,

3 Group = c("Exp", "Cont", "Exp", "Cont", "Exp", "Exp",

4 "Cont", "Exp", "Cont", "Cont"),

5 Value = c(-0.36, 0.28, 1.54, 0.51, -1.28, 1.15,

6 -2.22, -0.51, NA, -1.04)

7)

8 df

Subject Group Value

1 1 Exp -0.36

2 2 Cont 0.28

3 3 Exp 1.54

4 4 Cont 0.51

5 5 Exp -1.28

6 6 Exp 1.15

7 7 Cont -2.22

8 8 Exp -0.51

9 9 Cont NA

10 10 Cont -1.04

Alternatively, if you have the variables Subject, Group, and Value already stored as individual
vectors, you could build your data frame in the following way:

1 df <- data.frame(Subject, Group, Value)

2 df

Now, strictly speaking, you would almost never input your data into R in the manner we
have done here (i.e., by manually typing in the values). However, the basics of constructing a data
frame is an essential, and frequently appealed to, piece of knowledge when working with R.

There are two critical features of data frames that separates them from traditional spread-
sheets. The first is that each column needs to consist of a single object mode (e.g., numeric,
character, or logical; see 1.4.4). For instance, in the data frame above, the Subject column
consists only of numeric objects, the Group column only consists of character objects and the
Value column, again, only consists of numeric objects. We can see this by running the following
code:

1 sapply(df, FUN = mode)

Subject Group Value

"numeric" "character" "numeric"

37 How To Code Using R: The Fundamentals

In this example, the sapply() function has, quite literally, applied the function mode()

to each of the columns of our data frame, thereby telling us what each column’s mode is. The
argument FUN is just short for “function” and is telling sapply() what function you want to
apply to the columns. In this case we are applying the mode() function.

Knowing the mode of a column is very important because columns behave like vectors insofar
as trying to mix and match different object types within a single column will potentially change
that entire column. As an example, if we had coded ...

1 Value = c("-0.36", 0.28, 1.54, 0.51, -1.28, 1.15, -2.22, -0.51, NA, -1.04)

you will find that every single number in that column automatically becomes a character object
even though only the first of the nine elements was typed as a character object. This is going to be
very irritating if you want to perform mathematical operations on that column and are unaware
that all of its elements have been coerced into character objects (notice that printing the data
frame does not show character objects with quotes like vectors do).

The second critical feature of data frames is that each column must contain the same number
of elements as every other column. In our example, Subject, Group, and Value all contain 10
elements (the missing value is counted as an element). In most cases, if you try and build a data
frame with columns of unequal lengths, R will produce an error message.

1 df_2 <- data.frame(

2 a = 1:4,

3 b = 1:3

4)

Error in data.frame(a = 1:4, b = 1:3) :

arguments imply differing number of rows: 4, 3

In other cases, if you have an unequal amount of values in your columns and R determines that it
can evenly repeat a sequence, R will automatically recycle that sequence.

1 df_3 <- data.frame(

2 a = 1:4,

3 b = 1:2

4)

5

6 df_3

a b

1 1 1

2 2 2

3 3 1

4 4 2

1. Summoning Basics: An Introduction to R 38

Notice in the above example that we assigned four values to the a column and two values to the
b column and instead of producing an error, R simply recycled the values in b to fill the empty
spots.

Indexing

Similar to how vectors can be indexed using square brackets, data frames can also be indexed.
Going back to our original data frame (df), suppose we wanted to look at the value found in the
fifth row of the third column. This can be easily accomplished in the following way:

1 df[5, 3]

[1] -1.28

Notice, the number on the left side of the comma (5) refers to the row, and the number on
the right side (3) refers to the column. The easy way to remember this is that the numbers in the
brackets represent a x and y coordinate system, with x’s being rows, and y’s being columns.

In the last example we selected a single element of our data frame, but we can select more
than one value and more than one column if need be. For instance, we could isolate rows 1, 3,
and 5, from columns 2, and 3 only.

1 df[c(1, 3, 5), c(2:3)]

Group Value

1 Exp -0.36

3 Exp 1.54

5 Exp -1.28

If you wanted to keep all the columns visible while only looking at rows 1, 3 and 5, you need only
to leave the left side of the comma blank.

1 df[c(1, 3, 5),]

Subject Group Value

1 1 Exp -0.36

3 3 Exp 1.54

5 5 Exp -1.28

39 How To Code Using R: The Fundamentals

A similar logic applies to rows:

1 df[, c(2:3)]

Group Value

1 Exp -0.36

2 Cont 0.28

3 Exp 1.54

4 Cont 0.51

5 Exp -1.28

6 Exp 1.15

7 Cont -2.22

8 Exp -0.51

9 Cont NA

10 Cont -1.04

Extracting Columns as Vectors

There will also be many circumstances where you need to work with the values of a single column
only. For instance, if you want to calculate the mean of the third column (Value), you can use
one of R’s extraction operators, the $, to isolate that column. The following code will isolate the
Value column and output it as a vector:

1 df$Value

[1] -0.36 0.28 1.54 0.51 -1.28 1.15 -2.22 -0.51 NA -1.04

You can, therefore, just insert this into the mean() function.

1 mean(df$Value, na.rm = TRUE)

[1] -0.2144444

Alternatively, instead of using the $ operator, you can use doubled square brackets to specify the
column number you want:

1 df[[3]]

[1] -0.36 0.28 1.54 0.51 -1.28 1.15 -2.22 -0.51 NA -1.04

Neither method of extracting a column is intrinsically better than the other. It really boils
down to whether you prefer to reference your columns by names or numbers. The former is often
easier to read at the expense of writing more code, whereas the latter, while harder to discern at
a quick glance, requires less writing and can produce, superficially, a tidier looking script.

If you want to extract a column, but still preserve its classification as a data frame instead
of dropping it to a vector you can include the argument drop = FALSE inside your indexing

1. Summoning Basics: An Introduction to R 40

brackets. This is useful for situations where you want to preserve the name of the column you
have indexed.

1 df[, 3, drop = FALSE]

Value

1 -0.36

2 0.28

3 1.54

4 0.51

5 -1.28

6 1.15

7 -2.22

8 -0.51

9 NA

10 -1.04

Adding and Removing Columns

Adding new columns to a data frame is very simple. Suppose we wanted to create a column named
Alpha containing the first 10 letters of the English alphabet.

1 df$Alpha <- letters[1:10]

2 df

Subject Group Value Alpha

1 1 Exp -0.36 a

2 2 Cont 0.28 b

3 3 Exp 1.54 c

4 4 Cont 0.51 d

5 5 Exp -1.28 e

6 6 Exp 1.15 f

7 7 Cont -2.22 g

8 8 Exp -0.51 h

9 9 Cont NA i

10 10 Cont -1.04 j

If we wanted to create a column named new_val that multiplies all the numbers in the Value
column by 100, we can easily do that.

41 How To Code Using R: The Fundamentals

1 df$new_val <- df$Value * 100

2 df

Subject Group Value Alpha new_val

1 1 Exp -0.36 a -36

2 2 Cont 0.28 b 28

3 3 Exp 1.54 c 154

4 4 Cont 0.51 d 51

5 5 Exp -1.28 e -128

6 6 Exp 1.15 f 115

7 7 Cont -2.22 g -222

8 8 Exp -0.51 h -51

9 9 Cont NA i NA

10 10 Cont -1.04 j -104

To remove a column, there are a few options. Assuming you want to remove the Alpha
(fourth) column, you can just set that column equal to a null value, which just means that
something is undefined and therefore does not exist as an object in the R language.

1 df$Alpha <- NULL

2 df

Subject Group Value new_val

1 1 Exp -0.36 -36

2 2 Cont 0.28 28

3 3 Exp 1.54 154

4 4 Cont 0.51 51

5 5 Exp -1.28 -128

6 6 Exp 1.15 115

7 7 Cont -2.22 -222

8 8 Exp -0.51 -51

9 9 Cont NA NA

10 10 Cont -1.04 -104

If you want to remove multiple columns, a quick way is to simply index the columns you
do NOT want to keep, negate them using a minus sign (which means you are now technically
indexing the ones you DO want to keep). You can then override your data frame object, which in
our case is (df). To illustrate, we will remove column’s one and four.

1. Summoning Basics: An Introduction to R 42

1 df <- df[, -c(1, 4)]

2 df

Group Value

1 Exp -0.36

2 Cont 0.28

3 Exp 1.54

4 Cont 0.51

5 Exp -1.28

6 Exp 1.15

7 Cont -2.22

8 Exp -0.51

9 Cont NA

10 Cont -1.04

Adding and Removing Rows

To add a row to an existing data frame, the conventional strategy is to use the rbind() function.
“rbind” is short for “row bind” and does more or less what it says on the box: it binds (i.e.,
combines) objects by rows. For instance, if we create a new dataframe that contains a row (or
rows) we want to add, we can then use the rbind() function to append it to the original
dataframe.

1 new_row <- data.frame(

2 Group = "SPAM",

3 Value = 999

4)

5

6 df <- rbind(df, new_row)

7 df

Group Value

1 Exp -0.36

2 Cont 0.28

3 Exp 1.54

4 Cont 0.51

5 Exp -1.28

6 Exp 1.15

7 Cont -2.22

8 Exp -0.51

9 Cont NA

10 Cont -1.04

11 SPAM 999.00

43 How To Code Using R: The Fundamentals

To remove rows (e.g., 9 and 11), you can follow the same basic process that was outlined for
removing columns.

1 df <- df[-c(9, 11),]

2 df

Group Value

1 Exp -0.36

2 Cont 0.28

3 Exp 1.54

4 Cont 0.51

5 Exp -1.28

6 Exp 1.15

7 Cont -2.22

8 Exp -0.51

10 Cont -1.04

Row and Column Names

Notice in the previous example that, by removing row 9 (i.e., the row that contained the NA

value), the index numbers on the leftmost side of the data frame’s output become mislabelled.
It counts from 1 to 8, skips 9, and goes straight to 10. The reason it does this is because those
numbers on the left are not actually index values, as you might reasonably assume. They are
actually row names and, when the data frame was initially created, the rows were literally named
1 through 10.

R users tend to be on the fence as to whether this is a useful feature or not.18 It does
provide a nice visual confirmation that specific rows have been removed, but it makes future
indexing potentially more confusing since the row named 10 is actually the 9th row. Thus, its
often helpful to rename the rows after you have subset or removed certain values. You can do this
using the rownames() function.

1 rownames(df) <- 1:nrow(df)

2 df

Group Value

1 Exp -0.36

2 Cont 0.28

3 Exp 1.54

4 Cont 0.51

5 Exp -1.28

6 Exp 1.15

7 Cont -2.22

18If you, like the tidyverse high council, see this as a mild heresy, fear not—the tibble (covered in Chapter 3) was
made with you in mind.

1. Summoning Basics: An Introduction to R 44

8 Exp -0.51

9 Cont -1.04

Note that we used the function nrow() to create the sequence of numbers. This function
simply counts how many rows are in a data frame.

1 nrow(df)

[1] 9

An alternative way of defining the row names would have been to type rownames(df) <- 1:9 ;
however, this is STRONGLY discouraged. The reasons being that 1) if you are working with a
large data frame, you often do not know how many rows there are and 2) if some aspect about
your data frame changes in the future (maybe because you have updated your data set or indexed
different values), the 1:9 is no longer going to be accurate and will produce errors that you may
or may not notice, unless you have remembered to change it. Using the code 1:nrow(df) ensures
that your row names will always be correct.

Here we have named our rows using numbers, but you can technically name rows anything
you want.

1 rownames(df) <- month.name[1:nrow(df)]

2 df

Group Value

January Exp -0.36

February Cont 0.28

March Exp 1.54

April Cont 0.51

May Exp -1.28

June Exp 1.15

July Cont -2.22

August Exp -0.51

September Cont -1.04

Generally speaking though, this is not something you should be doing. If you wanted to
label each row with a name of the month, you would be better off creating a new column called
Month, and keeping the row names as ascending integers.

Column names can be renamed in a similar fashion using the colnames() function. Though,
R’s syntax does not permit you to name them solely with numeric values, nor are you allowed to
include spaces or any type of special characters other than an underscore.

45 How To Code Using R: The Fundamentals

1 colnames(df) <- c("1st_Col", "2nd_Col")

2 df

1st_Col 2nd_Col

January Exp -0.36

February Cont 0.28

March Exp 1.54

April Cont 0.51

May Exp -1.28

June Exp 1.15

July Cont -2.22

August Exp -0.51

September Cont -1.04

If you do use a number, space, or special character to name your column, it becomes a
non-syntactic name (see section 1.4.4) and backticks become necessary to isolate it.

1 colnames(df) <- c(1, "Col 2")

2 df

1 Col 2

January Exp -0.36

February Cont 0.28

March Exp 1.54

April Cont 0.51

May Exp -1.28

June Exp 1.15

July Cont -2.22

August Exp -0.51

September Cont -1.04

1 df$1

Error: unexpected numeric constant in "df$1"

1 df$Col 2

Error: unexpected numeric constant in "df$Col 2"

1 df$`1`

[1] "Exp" "Cont" "Exp" "Cont" "Exp" "Exp" "Cont" "Exp" "Cont"

1 df$`Col 2`

[1] -0.36 0.28 1.54 0.51 -1.28 1.15 -2.22 -0.51 -1.04

1. Summoning Basics: An Introduction to R 46

1.5 Packages

As a standalone piece of software, R has an excellent toolbox of functions and operations for
most data analysis/science scenarios; however, it is by no means a complete toolbox. Like any
statistical software, there are scenarios for which it is simply not equipped to handle on its own.
But R being a language means it is adaptable to these scenarios. R users can program their
own sets of functions to suit a specific purpose and package these functions with appropriate
documentation and data for other R users to install into their own personal library of packages.

The packages R users make publicly available are downloaded from online repositories (often
called “repos”). The Comprehensive R Archive Network (CRAN) discussed in section 1.3.2 is one
such repository, another well known one would be GitHub.19 The CRAN repository is easily the
most frequented by R users and is likely to be the only R repository you will ever need. It is special
in that the packages it provides are curated by the The R Project for Statistical Computing.

To install a package from the CRAN repository you simply run the function
install.packages(" ") with the package name inside the quotation marks. As an example,
we shall install the “cowsay” package.

1 install.packages("cowsay")

Running the above line of code should prompt a variety of interesting things to occur inside
the console window. This is the package installing into the library of packages stored on your
computer. Upon successful completion of the install should be, among other things, a statement
reading something to the effect of package ‘cowsay’ successfully unpacked . What this
means is we can now access the various functions contained within the package, but before we do
we should install another package called “praise”.

1 install.packages("praise")

In order to access the functions contained in these packages we need only execute the line
library() with the package name inside the parentheses (quotation marks are not used here).

1 library(cowsay)

2 library(praise)

We can now run the functions say() and praise() in the following way:

1 say(praise())

It should be noted that when you close your R environment, you will not have access to
these two functions the next time you open R. However, you can easily regain access to them by

19This textbook actually has its own GitHub repo: https://github.com/statistical-grimoire/book

https://github.com/statistical-grimoire/book

47 File Extensions

re-running the library() functions above (meaning these lines should be saved in the scripts
you write). You do NOT need to reinstall the packages unless you have updated to a new release
of R itself (e.g., you have moved from version 4.4.1 to version 4.5.0).

Each package downloaded from the CRAN repository has documentation associated for both
it and the functions it provides. This documentation can be accessed through the usual route of
typing a ? followed by the package name or function name. Since it is easy to miss, it should be
noted that the top left corner of R documentation specifies what package a function belongs too
(see section 2.1 for details on handling conflicting packages). Insofar as learning about a package
is concerned, R Documentation is quite useful, but often times a better option is to seek out its
accompanying .pdf reference manual. A basic internet search is usually the simplest way to find
these for any given package; however, the R project has links to the manuals of all its packages in
the package’s description page. The following web address will take you to a complete list of all
the current CRAN packages available to download and provide you with a link to each package’s
description page.

https://cran.r-project.org/web/packages/available_packages_by_name.html

1.6 File Extensions

Most users are familiar with the fact that computers store a multitude of files, each serving
different purposes. We encounter various types of files daily: image files, text files, audio files,
and much more. Within these broad categories lie even more specific file types, each with unique
characteristics and uses. For example, image files can be distinguished into formats such as .gif,
.jpg, .png, and .tiff, each catering to different needs in terms of quality, compression, and
usage.

Historically, the way in which users could distinguish different file types was by looking at the
file extension appended to the file’s name. For instance, when looking at an image file, you might
see a .png at the end of the name (e.g., grandma.png) indicating that it is a portable network
graphics file. The file extension dictates which programs can read the file and how they read
them.20 This is in contrast to directories which have no extension (directories will be discussed
next in section 1.7).

Unfortunately, most modern operating systems are configured in such a way that they do
NOT display file extensions and, if a (conventional) user needs to identify a file type, they are
expected to determine it on the basis of how the file’s icon looks, which is often unreliable.
Microsoft’s Windows operating system began adopting this practice of hiding extensions around
2015 with Windows 10, and Macintosh computers had been doing it even longer than that.

20I apologize if this is obvious to many of you reading this, but experience teaching has taught me that this is
no longer common knowledge and needs to be explained to younger audiences.

https://cran.r-project.org/web/packages/available_packages_by_name.html

1. Summoning Basics: An Introduction to R 48

The reasons why this change took place are not altogether clear, but the main justification
seems to be that there is an inherent danger in users accidentally deleting or altering an extension
when renaming a file, thereby causing it not to run. At face value this makes a certain amount of
sense, but not when you consider the problems that it creates. In particular, this compromises a
computer’s (and by extension a network’s) security much more. Seeing an unfamiliar file extension
and knowing not to click on it (because it is unfamiliar) is one of the most effective ways of
preventing malicious software from attacking your computer. Seeing unfamiliar file extensions
also means the user is less likely to move, delete, or open file types on their system they do not
understand and are integral for the running of their system and its applications. However, with no
file extension displayed there is no obvious way of distinguishing familiar file types from unfamiliar
ones.

Hiding extensions also creates the problem of a wolf in sheep’s clothing. Seeing
grandma.png.exe on a system that is configured to hide extensions will display for the user as
grandma.png, leading someone (a child perhaps) to believe they are clicking an innocent image
of their grandma, when in fact their computer is about to be devoured by grandma.21

For both security and everyday use, it is important for users to understand that different
types of files exist and that they can easily identify them. The relatively modern practice of hiding
file extensions prevents new users from gaining the essential experience needed to learn this and
tends to make programming a more cumbersome process than it needs to be. The reality is that
file extensions are essential pieces of information for any programmer working with or creating
files. Fortunately, operating systems still make it possible to display extensions and it is highly
recommend that readers of this book enable that feature on their respective system:

• Windows 11:

1. In the Windows search bar type “File Explorer Options.”

2. Open the File Explorer Options menu.

3. Select the View tab.

4. In the Advanced Settings scroll area, uncheck the box labelled

Hide extensions for known file types.

21Once upon a time users were expected to be the “smart” ones, not their devices.

49 File Extensions

Figure 1.3: From the National Gallery of Victoria, Melbourne: Gustave Doré’s illustration of the “penultimate
moment, just before the triumphant, and satiated, wolf bites off Little Red Riding Hood’s head” in Charles Perrault’s
version of the classic fairy tale (Doré, 1862).

1. Summoning Basics: An Introduction to R 50

• Macintosh:

1. In a Finder window on your Mac

2. Select Finder at the top of the screen.

3. Open Settings (“Preferences” on older Macs)

4. Select Advanced.

5. Choose select Show all filename extensions.

1.7 Directories

Something often overlooked in introductions to programming languages is the concept of direc-
tories. Particularly in the context modern operating systems, directories have fallen into the
background of basic computing knowledge users are expected to have. It is very much something
that modern operating systems do not want their general user base to think or even know about,
but they are an essential piece of knowledge for programming in any language.

A directory is what most people refer to as a file folder on their computer - but this
is a misnomer because the literal image of a folder you see on your desktop is actually just
your operating system’s way of visually representing what is more technically called a directory.
Speaking more accurately, a directory is an address that directs you to a file. Thus, in the same
way that people have an address indicating where they live, files that are stored on your computer
also have addresses.

As an example, if you right click the icon of a file on your desktop (control-click on a Mac)
and select “properties” (or “get info” on a Mac), among the various pieces of information it lists
is “Location” (or “Where”) information. For instance, on your computer you might see something
similar to these:

• Location: C:\Users\Your Name\Desktop

• Where: Macintosh HD > Users > Your Name > Desktop

This indicates that the file is located within the Desktop directory; which itself is located within
the Your Name directory, which is located within the Users directory; which is located on the
hard drive named C or Macintosh HD.

1.7.1 The Working Directory

Any time R needs to access or create a file, it needs to access or create that file somewhere and
if you do not tell R where that somewhere is, it will default to what is known as the working
directory. To see where your current working directory is set to you can just run the function
getwd() .

51 Directories

1 getwd()

[1] "C:/Users/Acheron/Documents"

The R output in this case will likely vary between different computers, so you should not expect
to see the exact same output on your computer, but it should be relatively similar.

The way to interpret what we are seeing here is as as a path, or route to get to the directory
called Documents . C:/ represents the hard drive and many computers will have more than one
of these, so it is vital to know which one you are working in. Within the hard drive is the directory
called Users . We can tell that Users is a directory here and not a file because it is bounded
by forward slashes, / , and has no file extension.22 Then we have a subdirectory of that called
(on my computer) Acheron . From this subdirectory Acheron , we have another subdirectory,
which is called Documents .

To change working directory you can simply use the function setwd() and specify the full
address. As an example, to change the working directory to the desktop you would type something
akin to ...

1 setwd("C:/Users/Acheron/Desktop")

2 getwd() # Run to confirm wd

[1] "C:/Users/Acheron/Desktop"

Generally speaking, the default behaviour of RStudio is to set the working directory as
the computer’s main “Documents” folder. This default behaviour of RStudio can be changed by
selecting Tools > Global Options > General. Alternatively, if you open a script file in R studio
by clicking on it with your mouse, RStudio will automatically set the working directory to the
location of that script file.

To illustrate how directories work and how you can easily navigate them, we are going to
create a simple data frame and save it as a spreadsheet file that we can open on our computer.

1 # Create the data frame

2 df <- data.frame(Alphabet = letters)

To save this as a spreadsheet file, we can use the function write.csv() . This function will save
our data frame as something called a .csv file, which is just a universal type of spreadsheet file
that any spreadsheet software can open. To use this function, we just need to give it our data
frame and tell it what we want our file name to be.

22When it comes to directory paths, it is not uncommon to also see them written using backslashes (\), particularly
on Windows. The reasons for this difference in convention boil down to the development history of various types of
software. All you need to know is that R will always use a forward slash /.

1. Summoning Basics: An Introduction to R 52

1 write.csv(df, file = "letters_1.csv")

Running this function will save a file on our computer called letters_1.csv , but where
has it saved it? As you have hopefully realized, it has saved it to our working directory. Thus,
if your working directory is set to your desktop, you should see the file letters_1.csv located
there. You can have R list the files (and subdirectories) in your working directory by running

1 list.files(path = ".")

[1] letters_1.csv

A word of warning: If your working directory contains many files, this command may produce a
long list of them, with letters_1.csv being just one among many.

Alternatively, we could have saved the file by specifying the complete file path followed by
the file name we want our spreadsheet to have.

1 write.csv(df, file = "C:/Users/Acheron/Desktop/letters_1.csv")

This method, while much more annoying to type, is valuable because it allows us to save
the file in any location we want on our computer. For instance, we could have saved the file the
Documents folder, even though the working directory is set to the Desktop.

1 write.csv(df, file = "C:/Users/Acheron/Documents/letters_2.csv")

1.7.2 Navigating Directories

When it comes to navigating directories, it is quite cumbersome to type the full address of a
location on your computer. Additionally, writing a fixed address into your code makes it difficult
for other people run that same code on their computers since directories vary from computer to
computer. Consequently, it is usually beneficial to specify a path relative to the working directory.
To illustrate we are going to use the function dir.create() .

1 dir.create(path = "./Directory A")

This will create a directory (i.e., visually you will see a folder) called Directory A inside your
working directory. The period (.) in front of the forward slash (/) is a shorthand way of
referring to the current working directory. Thus, you can view the path here as equivalent to
typing "C:/Users/Acheron/Desktop/Directory A" .

53 Directories

Next we will nest another new directory, B, inside A, and then nest a directory, C, inside
B, such that the path structure ends up like this:

Directory A

Directory B

Directory C

1 dir.create(path = "./Directory A/Directory B")

2 dir.create(path = "./Directory A/Directory B/Directory C")

When a directory is nested within another directory, we refer to that as a subdirectory.

Now suppose we wanted to save our spreadsheet inside Directory A . One way of doing
this would be to specify the full path, but an easier way is to specify the path relative to our
working directory using the period notation.

1 write.csv(df, file = "./Directory A/letters_3.csv")

Directory A

Directory B

Directory C

letters_3.csv

Moving further down a directory is a straightforward matter, but what if you wanted to
move up the file path? For instance, suppose the working directory is located in Directory C .

1 setwd("./Directory A/Directory B/Directory C")

Further suppose we wanted to save the spreadsheet in Directory B . To do this we would just
represent moving “up” one directory with two periods ("..").

1 write.csv(df, file = "../letters_4.csv")

Directory A

Directory B

Directory C

letters_4.csv

letters_3.csv

1. Summoning Basics: An Introduction to R 54

If you wanted to save the file two directories up, you just carry forward the logic.

1 write.csv(df, file = "../../letters_5.csv")

Directory A

Directory B

Directory C

letters_4.csv

letters_3.csv

letters_5.csv

And you can use the same logic reset the working directory back to the Desktop .

1 setwd("../../..")

We end up back at the Desktop because ...

• ".." moves us from Directory C up to Directory B .

• "../.." moves us from Directory C up to Directory A .

• "../../.." moves us from Directory C up to the Desktop , which is where Directory A

is located in this case.

It has to be said that, even if you are specifying a locations relative to the working directory,
path addresses can still get quite long, for this reason it is often helpful to store directories as
character strings that are easier to type and combine as needed. If we run ...

1 wd <- getwd()

2 dir_A <- "Directory A"

3 dir_B <- "Directory B"

4 dir_C <- "Directory C"

We can then use the file.path() function to, for instance, to produce a complete path directly
to directory A, B, or C with minimal code that is easier to read.

1 file.path(wd, dir_A, dir_B, dir_C)

"C:/Users/Acheron/Desktop/Directory A/Directory B/Directory C"

55 Directories

So if we wanted to save our spreadsheet in Directory C using the full file path we could run ...

1 name <- file.path(wd, dir_A, dir_B, dir_C, "letters_6.csv")

2 write.csv(df, file = name)

Directory A

Directory B

Directory C

letters_6.csv

letters_4.csv

letters_3.csv

letters_5.csv

Chapter 2

Harnessing Sacred Rites of the tidyverse:

The Basics of Plotting Data with R

T
HE history of R can be split into two epochs. First, there was the age before the

tidyverse—a time of primordial chaos, where data analysts toiled in the shadows, their

efforts marred by inefficiency and hardship. It was a brutal time, full of necessary

violence, that forged the tools for what was to come.

Then came the tidyverse. A revelation. A collection of mystical and cohesive R packages, sum-

moned into the light by Hadley Wickham and his coven of arcane programmers (Wickham et al., 2019).

Their sorcery brought order to the chaos, shaping the wild, unruly cosmos of R into something us-

able—something powerful.

Figure 2.1: An engraving depict-
ing acolytes of the tidyverse burn-
ing live sacrifices, captive within a
large wicker effigy, to appease their
deities (Pennant, 1784).

The tidyverse became a gateway for common folk, allowing them

to twist, shape, and visualize data with an ease once reserved for only

the most privileged elite. Though once viewed as complex and hereti-

cal (Muenchen, 2017), the tidyverse has become an essential craft, passed

from hand to hand, spreading like whispers in the dark. The art of tidy

data flourished, growing stronger through collaboration, trial, and sac-

rifice.

Makenomistake: sacrifice is inevitable (seeFigure 2.1). Therewill

be frustration, moments of despair, and the occasional bout of madness.

Yet the tidyverse offers an unparalleled path to power, a means to har-

ness the dark beauty of data in ways that defy the purposeless void.

And so, we begin our journey here—with the basics of data plot-

ting. Like any great practitioner of forbidden arts, youmust firstmaster

57

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 58

the grimoires and sigils of power. The tidyverse is no mere toolset; it is a pact, a ritual binding you to its

magic. To wield such dark sorcery without understanding is to invite chaos—but with mastery, you will

bend the data to your will, carving order from the void itself.

2.1 Worshiping at the alter of the tidyverse

As described by its website (https://www.tidyverse.org/), the tidyverse is an opinionated col-
lection of R packages that share an underlying design philosophy. Each package can be installed
individually, though most find it easiest to install every package within the scope of the tidyverse
all at once.

1 install.packages("tidyverse")

2 library(tidyverse)

── Attaching core tidyverse packages ──────────────────────────────── tidyverse 2.0.0 ──

dplyr 1.1.4 readr 2.1.5

forcats 1.0.0 stringr 1.5.1

ggplot2 3.5.1 tibble 3.2.1

lubridate 1.9.3 tidyr 1.3.1

purrr 1.0.2

── Conflicts ── tidyverse_conflicts() ──

dplyr::filter() masks stats::filter()

dplyr::lag() masks stats::lag()

Use the conflicted package to force all conflicts to become errors

While the above code installs all the packages, running library(tidyverse) only loads
the the nine “core” packages: ggplot2, dplyr, tidyr, readr, purr, tibble, stringr, forcats. Other tidy-
verse packages, such as readxl, will need to be loaded separately using the library() function.

Speaking for the beginner, it will be noticed that when the tidyverse is loaded, not only is
there a confirmation of what packages (and their versions) have been loaded, but there is also a
list of “conflicts” displayed in the output.1 For instance, two functions from the dplyr package,
filter() and lag() , have the same name as pre-existing functions within R and, when you
load a package with a conflict like this, precedence is always given to the most recently loaded
package. This means, when you use the filter() function for example, R is going to use the
version belonging to dplyr, not the original version that was a part of base R’s stats package (which
is pre-loaded each time you use R). Though you can still use that original version in the following
manner: package_name::function_name() . For example, stats::filter() .

1Most packages will not display this information for you quite so nicely as the tidyverse does, so pay attention
to any messages you receive using the library() function.

https://www.tidyverse.org/

59 Plotting with R

As a whole, the tidyverse will not solve all your problems, but it will come damn close.
Admittedly, and this is particularly true for beginners, much of what the tidyverse offers will not
be needed in your daily programming rituals, but will come in handy when least expected.

2.2 Plotting with R

A core component of any GOOD DATA ANALYSIS obviously involves visualizing your data. As
you progress through the various topics in this book, specific types of plots and their uses will
be discussed in detail; however, for the time being, it will be helpful to get an intuitive sense of
how plotting works with R generally. Thus, what follows in this section is intended to help you
understand the logic of plotting with R. The goal at this point is not to make you an expert;
rather, it is to provide beginners with a base level of knowledge and experience.

By itself, base R comes with a stock set of functions for plotting data. To illustrate we can
run the following code to produce a nice looking histogram ...

1 x <- rnorm(10000)

2 hist(x)

In the case of the above code, the function rnorm() is just generating 10,000 random values.2

The function hist(x) , is simply plotting those values as a histogram. Running the code should
generate an output similar to what you see below.

Histogram of x

x

F
re

qu
en

cy

−4 −2 0 2 4

0
10

00
20

00

Figure 2.2: An example of base R’s plotting functions.

R’s base plotting functions provide a convenient way to produce simple, high-quality plots,
and they can be quite efficient when working with basic univariate data involving only one
or two variables. However, modern research often demands the handling of far more complex
datasets—ones that may include multiple response variables alongside numerous explanatory
variables. Each additional variable adds layers of complexity and nuance to your data and, by

2The random values are technically coming from a “standard normal” distribution (hence the “norm” in rnorm),
but don’t worry about that for now.

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 60

extension, to the plots used to visualize them. While R’s built-in plotting tools can accommodate
these more elaborate scenarios, doing so often requires a high level of fluency with R’s syntax and
customization options. For this reason, this book will forgo R’s base plotting system in favour of
the widely respected ggplot2 package, a core component of the tidyverse. ggplot2 provides a more
consistent and powerful framework for building complex plots, making it the preferred tool for
data visualization throughout this text.

The “gg” in ggplot2 stands for “grammar of graphics,” a term borrowed from Leland Wilkin-
son’s influential book of the same name (Wilkinson, 2005). Now, the word “grammar” might
dredge up long-buried memories of dull English classes—but fear not. In this context, the term
simply emphasizes that ggplot2 is built on a coherent set of rules for assembling visualizations.
This structure allows users to build a wide variety of plots in a consistent, modular way that can
be easily tailored to their data and needs. This is a major improvement over many traditional
plotting systems, which often require you to awkwardly cram your data into rigid, predefined for-
mats—like trying to fit a square peg (your beautifully weird data) into a round hole (the software’s
narrow expectations).

The easiest way to understand how ggplot2 works is to simply dive in and use it. Along the
way, we will also learn a little bit more about R and data manipulation. However, a disclaimer is
perhaps useful here:

This chapter contains a large variety of functions and strategies for plotting data with

ggplot2. The reader would do well to head the advice provided on page 1.

The first thing to do will be to ensure that ggplot2 has been installed into our computer’s
library of packages and loaded so we can access its functions. As mentioned in section 2.1, if you
have installed and loaded the tidyverse, this is already done, but if you chose not to do that,3

ggplot2 can be installed and loaded as a standalone package as well.

1 install.packages("ggplot2")

2 library(ggplot2)

2.2.1 An example data set: msleep

Before we can plot anything, we need something to plot. In addition to its large set of plotting
functions, the ggplot2 package also provides a few illustrative data sets.4 We will work with the
msleep data set, which provides a variety of measurements relevant to the sleep behaviour of
a wide range of mammals. To access the data you need only run the code msleep , which will

3Shame on you.
4Base R comes with a nice collection of data sets as well. To obtain a list you need only run the function

data() . To obtain the list of data sets for ggplot2 you need only include the package name as an argument in
this function: data(package = "ggplot2")

61 Plotting with R

output a 83× 11 data frame.5 Given the limited space available in the console window, the data
frame is going to be truncated substantially. Thus, if you would like to view the entire data set,
you can utilize R’s View() function, which will display the data in a separate spreadsheet style
window.

1 msleep # print data to console

2 View(msleep) # view the data in a spreadsheet-style window

name genus vore order conservation sleep_total sleep_rem sleep_cycle awake brainwt bodywt

Cheetah Acinonyx carni Carnivora lc 12.1 NA NA 11.9 NA 50.000
Owl monkey Aotus omni Primates NA 17.0 1.8 NA 7.0 0.016 0.480
Mountain beaver Aplodontia herbi Rodentia nt 14.4 2.4 NA 9.6 NA 1.350
Greater short-tailed shrew Blarina omni Soricomorpha lc 14.9 2.3 0.133 9.1 0.000 0.019
Cow Bos herbi Artiodactyla domesticated 4.0 0.7 0.667 20.0 0.423 600.000
Three-toed sloth Bradypus herbi Pilosa NA 14.4 2.2 0.767 9.6 NA 3.850
Northern fur seal Callorhinus carni Carnivora vu 8.7 1.4 0.383 15.3 NA 20.490
Vesper mouse Calomys NA Rodentia NA 7.0 NA NA 17.0 NA 0.045
Dog Canis carni Carnivora domesticated 10.1 2.9 0.333 13.9 0.070 14.000
Roe deer Capreolus herbi Artiodactyla lc 3.0 NA NA 21.0 0.098 14.800

Table 2.1: First 10 rows of the msleep data

Table 2.1 shows the first 10 rows and 6 columns of msleep data. Looking more closely at
the data, we can see a variety of variables (the column names) that are, for the most part, self
explanatory. In this case, the column names represent distinct variables that have been measured
and, particularly with larger data frames that cannot be adequately printed to the console, it is
often useful to have R list out the name of each column. We can do this quite easily using the
names() function.

1 names(msleep)

[1] "name" "genus" "vore"

[4] "order" "conservation" "sleep_total"

[7] "sleep_rem" "sleep_cycle" "awake"

[10] "brainwt" "bodywt"

Now, while the names of each column are self-explanatory, the elements of each column are
perhaps less so. For instance, in the $sleep_total column, are we looking at values in minutes,
hours, or days? In the $conservation column we can see a number of abbreviations such as
lc , nt , vu , and so on. What do we make of those? A good starting point for answering these
questions is to check the documentation associated with the data set, which all CRAN packages
are required to include. This can be accessed in the usual way with a ?

1 ?msleep

5Technically we are looking at a “tibble”, which is the “tidyverse’s” own take on a data frame. For our present
purposes though, this is a distinction without a difference.

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 62

Inspecting the documentation, we can see that $sleep_total is given in hours and that the col-
umn $conservation indicates “the conservation status of the animal.” Admittedly, concerning
this latter column, that does not tell us too much, but it does at least give us a starting point for
understanding what those values might represent. In all likelihood, we are seeing abbreviations
for the IUCN’s (International Union for Conservation of Nature) species ranking.

• lc = Least Concern
• nt = Near Threatened
• vu = Vulnerable
• en = Endangered
• cd = Conservation Dependent

Using a scatter plot as a basic starting point, we will graph the relationship between
the variables body weight (kg) and sleep total (hours). These are represented by the columns
$bodywt and $sleep_total respectively.

2.3 Adding layers

ggplot2 constructs plots by adding visual layers on top of one another. The first layer is the grid
upon which our scatter plot’s points will appear. To generate this first layer we can simply type:

1 ggplot(data = msleep, aes(x = bodywt, y = sleep_total))

5

10

15

20

0 2000 4000 6000
bodywt

sl
ee

p_
to

ta
l

Looking at the ggplot() function we typed, we can see that the argument data tells ggplot2
where the data is coming from - in this case it is coming from the msleep data frame. The x

and y arguments are telling ggplot2 what variables/columns should be mapped to the x and y

axis respectively. Notice that, not only has ggplot2 labelled the axis accordingly, but it has also
given them scales that correspond to size of the values found in both columns.

63 Adding layers

Next we will, quite literally, add (+) a layer of points on top of this by typing + geom_point() .
The term “geom” here is just an abbreviation for “geometric object”, and points are one of many
different types of geometric object ggplot2 recognizes.

1 ggplot(data = msleep, aes(x = bodywt, y = sleep_total)) +

2 geom_point()

5

10

15

20

0 2000 4000 6000
bodywt

sl
ee

p_
to

ta
l

At this juncture, it is worth taking a moment to talk about how this code we have written has
been organized. Here we placed geom_point() on a new line and indented it. This was not
something we strictly had to do. We could have put everything on a single line like so ...

1 ggplot(data = msleep, aes(x = bodywt, y = sleep_total)) + geom_point()

But, particularly as we add more customization to the plot, this style of writing becomes hard to
read. The (tidyverse’s) R style guide recommends that no line of code exceed 80 characters, which
is the advice most of the R community adheres to. In fact, Rstudio can be configured to display
a margin representing the 80 character limit: (Tools → Global Options → Code → Display). To
ensure that you do not exceed limit with larger blocks of code, it is worth remembering that you
can always move portions of code to a new line after a comma, operator, or unclosed parentheses.
The indentation we used is purely to guide the eye in recognizing that geom_point() belongs to
a larger block of code.6

2.3.1 Inspecting potential outliers

At present, the plot does not look like much. There are numerous points scattered between 0
and 1000, and a couple of very extreme points beyond which are skewing the x-axis scale and
making the majority of the data difficult to visualize. Given how rare and extreme these two
values appear, we should inspect them to ensure that they are not errors within the data set (i.e.,
ensure that there is not a 2500 kg mouse, bird, or other such abomination in our data set). To

6While the R programming language allows users to indent code with reckless abandon, some programming
languages, such as Python, require it to be used in very specific ways.

https://style.tidyverse.org/syntax.html#long-lines

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 64

accomplish this, most people will instinctively try to scan the data frame’s 83 rows one by one
with their eyes. Obviously, that strategy will be slow, inefficient, and highly prone to error. A
better strategy is to have R isolate these values using the filter() function which is part of
the tidyverse’s dplyr package.7 We simply give the function our data frame, and then specify a
logical rule to subset by. In this case we will tell the function to show us all the rows that have a
body weight greater than 2000.

1 filter(msleep, bodywt > 2000)

A tibble: 2 × 11

name genus vore order conservation sleep_total

<chr> <chr> <chr> <chr> <chr> <dbl>

1 Asian elephant Elephas herbi Proboscidea en 3.9

2 African elephant Loxodonta herbi Proboscidea vu 3.3

5 more variables: sleep_rem <dbl>, sleep_cycle <dbl>, awake <dbl>,

brainwt <dbl>, bodywt <dbl>

A quick glance at the output reveals that these two points represent the Asian and African
elephant respectively. Thus, while these values are quite extreme and do not seem to be terribly
representative of the data as a whole, they are not mistakes and therefore should remain in the
data set. However, this begs the question, how do we visualize this data adequately with such odd
scaling?

2.3.2 Logarithms

A common strategy in cases like this where larger values tend to become more and more extreme
(i.e., exhibit some kind of exponential growth) is to plot the logarithm of the values. As a refresher
of high school mathematics, logarithms are essentially exponents in reverse. For example:

103 = 10× 10× 10 = 1000

A base-10 logarithm simply undoes this process by stating how many 10s it takes to create 1000.

log10(1000) = 3

A base-2 logarithm asks: how many 2s are required to create 1000?

log2(1000) ≈ 9.966

Thus, 29.966 ≈ 1000.

A natural logarithm uses a base denoted as e (Euler’s Number), which is approximately 2.71828.

loge(1000) ≈ 6.908

7Base R has a (more or less) equivalent function subset() that we could use as well. There are reasons for
preferring filter() , but in this context there is no advantage to using either.

65 Adding layers

Base-10, base-2, and natural logarithms represent the most widely used types of logarithms,8 but
you can technically use any base you desire. As seen below, the use of logarithms in R is very
straightforward.

1 log10(1000) # Base-10 function

2 log2(1000) # Base-2 function

3 log(1000) # Natural log

4 log(1000, base = 666) # Pick your own base

[1] 3

[1] 9.965784

[1] 6.907755

[1] 1.062521

A base-10 logarithm is generally considered the most intuitive so we will use that. There are
various ways to incorporate a logarithmic scale on our plot’s axis, but perhaps the safest way is to
simply add a new column of log10 values to our dataframe and plot that instead of the standard
$bodywt column (see Box 2.1 for a alternative method of scaling the axis).

1 # Add new column of log bodywt values.

2 msleep$bodywt_log10 <- log10(msleep$bodywt)

3

4 # Re-plot the data

5 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

6 geom_point()

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

8For clarity and consistency the natural logarithm of 1000 has been written loge(1000), but it is common practice
to identify natural logarithms using “ln”. E.g., ln (1000) ≈ 6.908.

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 66

Box 2.1: An alternative way to scale

In the previous example, the logarithm was applied by creating a new column of x-axis values

and plotting that. However, this means that, if you want to interpret the numbers in their

original units, you need to calculate 10x, which can be annoying.

An alternative strategy would be to keep the $bodywt column as is and just scale the plot's axis

itself to increment logarithmically, which ggplot2 will do straightforwardly.

1 ggplot(msleep, aes(x = bodywt, y = sleep_total)) +

2 geom_point() +

3 scale_x_continuous(trans = "log10")

5

10

15

20

1e−01 1e+01 1e+03
bodywt

sl
ee

p_
to

ta
l

The advantage of this method is you can look at a point's value on the x-axis and know immedi-

ately that it corresponds to a weight of x kg. The drawback is you may end up with excessively

small or large values on the axis, hence the scientific notation you see in the plot.

https://www.mathsisfun.com/numbers/scientific-notation.html

67 Aesthetics

2.4 Aesthetics

Geometric objects in ggplot2, like the point geom, all have various traits, like their size, shape, and
colour that can be customized. In the language of ggplot2, these are referred to as aesthetics.
For example, we can customize the points in the following way ...

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3,

3 shape = 4,

4 colour = "blue",

5 stroke = 1.5)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

With a bit of experimentation, it should be apparent how the arguments size and stroke

work in the above example; however, the shape and colour arguments are slightly less intu-
itive.9 R comes with a variety of point shapes (technically called “plotting characters” or “pch”
symbols for short) that are denoted by numbers. The various possibilities are depicted in Figure
2.3. In this case, number 4 is an ×. Notably, the last five plotting characters (21 through 25)
incorporate both a colour aesthetic for their edges and a fill aesthetic. All the other symbols
only require a colour aesthetic to be specified.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3,

4 shape = 25,

5 colour = "black",

6 stroke = 1.5,

7 fill = "red"

8)

9If you accidentally omit the “u” when typing “colour,” ggplot2 will still understand what you mean, even though
it isn’t correct English.

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 68

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

The plotting characters shown in Figure 2.3 are just a few of the options available. For instance,
by using values ranging between 32 and 127, you can display a variety of ASCII characters.
Additionally, you can specify a particular character instead of providing a numeric value, e.g.,
shape = "&" .

0 1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 2.3: R Plotting Characters

In the above examples we specified a desired colour by typing the name of a primary colour, but
we are not limited to just using primary colours. R comes with a built in set of 657 differently
named colours. You can obtain the full list of colour names by running colors() . R also has a
built-in demo of these colours you can run to get a visual representation of each. Simply run the
command demo("colors") .10

Alternatively, instead of typing a colour name, you can use a hexadecimal value (also referred
to as a “hex code” or “hex value”) that represents a specific colour. For example, the hex value
"#FFC0CB" represents the colour pink. Hexadecimal values offer the user a lot of nuance when
it comes to colour selection and, in most cases, the simplest way of finding an appropriate hex
value is to consult one of the many websites devoted to colour codes and colour theory (i.e., do an
internet search). However, if you would like to understand the theory behind hex codes and why
they are used, see Box 2.2.

10For some reason R spells “colour” incorrectly in these functions. This error has persisted for years, and the
developers show no signs of correcting it.

69 Aesthetics

Box 2.2: Hexadecimal Notation for Colours

Hexadecimal values are simply numbers that use a base-16 counting method. In other words, in

the world of hexadecimals, there are 16 different numbers that are used to count with, instead

of the typical 10 numbers (0 : 9), you were probably raised to use. These are

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

Because of their larger base, a single hexadecimal digit can store more information than a con-

ventional base-10 digit can. For instance, if a computer stores various gradations of the colour

red using just two digits, that only allows for 100 (10 × 10) different reds. Using hexadeci-

mals you can have 256 (16 × 16) reds, with just two digits. Thus, if a colour is some combi-

nation of red, green, and blue, and each is stored using two hexadecimal digits that gives you

2563 = 16, 777, 216 colours as opposed to themeagre 1003 = 1, 000, 000 you would have using

the inferior base-10 counting method.

To use hexadecimals to represent colour, two digits are assigned to red (RR), green (GG) and

blue (BB), in that order like so "#RRGGBB" . Smaller values are darker, and larger values are

brighter. Consequently, black is represented as "#000000" and white is represented as

"#FFFFFF" . Thus, if you want the “purest” red, you would input "#FF0000" , the purest

green would be "#00FF00" , and the purest blue would be "#0000FF" .

2.4.1 Aesthetics by variable

In the above examples, the aesthetic changes we made to the plots affected all of the points. In
the language of ggplot2, we would say that the aesthetics were mapped to all the points. However,
it is often necessary to visually break up the points according to one of the other variables in your
data. For instance, we could colour the points in our plot according to the categories in the data’s
$vore column.

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 70

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore))

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

NA

Notice that the plot’s legend shows an “NA” category. This is because there are NA values found
within the $vore column (run msleep$vore to see them). Thus, the legend’s “NA” category
represents values that we have body weight and sleep total information for, but we do not know
what those animals diet consists of and therefore cannot categorize them properly.11 So instead
of referring to this category as “NA”, we could refer to these as “unknown.” All we need to
do is change the NA values in the data frame’s $vore column to character values that read
"unknown" . This can be done simply by using the ifelse() function, which tests a statement
you write. If that statement is true, it produces a value you have specified, if it false, then it
produces an alternative value you have specified. In other words, it works like this:

ifelse(test, true result, false result) .

In this case, we want to test if the value in each row is an NA value or not. Recall that the
function is.na() tells us whether the value of a vector is an NA value or not.

1 is.na(msleep$vore)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[8] TRUE FALSE FALSE FALSE FALSE FALSE FALSE

[15] ...

11To see the full list of animals who have a missing $vore value, you can run filter(msleep, is.na(vore)) .
This will show all the rows for which is.na(vore) evaluates to TRUE .

71 Aesthetics

Thus, we can use that as the “test” in the ifelse() function.

1 ifelse(is.na(msleep$vore), "unknown", msleep$vore)

[1] "carni" "omni" "herbi" "omni" "herbi" "herbi" "carni"

[8] "unknown" "carni" "herbi" "herbi" "herbi" "omni" "herbi"

[15] "omni" "omni" "omni" "carni" "herbi" "omni" "herbi"

[22] "insecti" "herbi" "herbi" "omni" "omni" "herbi" "carni"

[29] "omni" "herbi" "carni" "carni" "herbi" "omni" "herbi"

[36] "herbi" "carni" "omni" "herbi" "herbi" "herbi" "herbi"

[43] "insecti" "herbi" "carni" "herbi" "carni" "herbi" "herbi"

[50] "omni" "carni" "carni" "carni" "omni" "unknown" "omni"

[57] "unknown" "unknown" "carni" "carni" "herbi" "insecti" "unknown"

[64] "herbi" "omni" "omni" "insecti" "herbi" "unknown" "herbi"

[71] "herbi" "herbi" "unknown" "omni" "insecti" "herbi" "herbi"

[78] "omni" "omni" "carni" "carni" "carni" "carni"

When you run the above code, the ifelse() function scans each row of the $vore column
and evaluates whether is.na(msleep$vore) is TRUE . If it is true, it replaces the existing NA

value with "unknown" . However, if it FALSE , it leaves it as the original value (this is why we
wrote msleep$vore after the second comma). The end result is a vector of values that we can
use to replace the existing $vore column with.

1 msleep$vore <- ifelse(is.na(msleep$vore), "unknown", msleep$vore)

Now, when we re-plot the graph, we get something much more sensible

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore))

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

When plotting, it is usually inadvisable to only adjust the colour of your points because
a sizeable portion of the population has some form of colour vision deficiency (a.k.a., colour
blindness). And while there are “colourblind friendly” palettes we can use, there is no universal
palette that works optimally for all cases of colour deficiency. Consequently, the best practice is

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 72

to have each category be represented by a distinct shape.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore))

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

2.5 Displaying trends

Notice that the data points appear to trend downward as you move from left to right on the
x-axis. In other words, as body weight increases, you tend to see decreases in sleep total. By
simply adding a second geom, called geom_smooth() , we can use a line of best fit to represent
(i.e., model) this trend.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore)) +

3 geom_smooth()

0

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

The shaded grey area represents a statistic called the standard error and the line was drawn
using a fancy smoothing method called local polynomial regression fitting, but we can use a more
common regression line as well and modify various aspects of it just like we had done earlier using
geom_point() .

73 Displaying trends

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore)) +

3 geom_smooth(

4 method = "lm", se = FALSE,

5 linetype = 2,

6 linewidth = 0.5,

7 colour = "black"

8)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

By setting method = "lm" on line 4, we are instructing ggplot2 to draw a linear model. While
the concepts of standard error, polynomial regression, and linear models are more advanced topics,
their value in displaying trends should be clear enough, even if the underlying mathematics is not
yet fully understood.

It is at this point where the versatility of the ggplot2 really begins to shine. For instance,
if we wanted to create a separate regression line for each category of $vore we can accomplish
that by once again making use of the aes() function and “grouping” by $vore .

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore)) +

3 geom_smooth(

4 method = "lm",

5 se = FALSE,

6 colour = "black",

7 linewidth = 0.5,

8 aes(group = vore)

9)

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 74

0

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

At present it is not clear which line applies to which category, but we could also have
each regression line correspond to the colour mapped to $vore , and (in consideration of colour
blindness) give each line a separate linetype .

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore)) +

3 geom_smooth(

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5,

7 aes(colour = vore, linetype = vore)

8)

0

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

2.6 Facets

As interesting as our plot looks, it is becoming rather cluttered and difficult to visually parse.
In situations like this, it is often helpful to split the plot up into separate facets (i.e., give each
category its own graph). ggplot2 makes this very easy with its facet_wrap() function.

75 Facets

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore)) +

3 geom_smooth(

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5,

7 aes(colour = vore)

8) +

9 facet_wrap(~ vore)

omni unknown

carni herbi insecti

−2 0 2 4 −2 0 2 4

−2 0 2 4
0

5

10

15

20

0

5

10

15

20

bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

You can interpret the small formula we wrote (~vore) as meaning “plot as a function of
vore.”

Notice that now, the colour and shape aesthetics are providing redundant information with
the facet labels. As a general rule, you want to avoid redundancy in your plots because additional
visual elements might bias the viewer’s eye in unpredictable ways. We can easily fix this by
removing some of the aesthetics we added earlier, and we can also adjust the facets so that they
are all on a single row by adding the argument, nrow = 1 to our facet_wrap() function.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3) +

3 geom_smooth(method = "lm", se = FALSE, linewidth = 0.5) +

4 facet_wrap(~ vore, nrow = 1)

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 76

carni herbi insecti omni unknown

−2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4
0

5

10

15

20

bodywt_log10

sl
ee

p_
to

ta
l

The default behaviour of facet_wrap() preserves the x and y axis scales across the facets,
making them easy to compare. In most cases, this is a feature you do not want to override but it
can be done (see the R documentation: ?facet_wrap).

Particularly for beginners with R, it is difficult to impress how useful ggplot2 is here. Using
base R plotting functions to produce a comparable graph would be a considerably more complex
process and require a heftier amount of code to be written, whereas ggplot2 does it all for us in
four short lines.

To finish up the plot, we should adjust some of the labelling, save it, and then take a look
at some other more advanced features of ggplot2.

2.7 Labels

To adjust the x and y axis titles we can simply use the function labs() .

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3) +

3 geom_smooth(

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5

7) +

8 facet_wrap(~vore, nrow = 1) +

9 labs(

10 x = "Log10(Body Weight kg)",

11 y = "Sleep Total (hrs)"

12)

77 Saving the plot

carni herbi insecti omni unknown

−2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4
0

5

10

15

20

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

2.8 Saving the plot

Users of R studio will notice that in the Plots pane there is a button that can be used to “export”
your plot. However, it is usually more efficient and useful to save the plot via written code, and
there are different methods you could use to go about this. Since we are using ggplot2 to create our
graphs, the optimal strategy is to use the ggsave() function, which will save the last generated
plot unless you tell it otherwise.

1 ggsave("msleep_plot.png", dpi = 300, units = "cm", width = 20, height = 7)

Running this code as is will save the plot to your working directory (see section 1.7 for
more info about directories and saving files). Within the function, we have chosen to name
our image file "msleep_plot.png" . The file extension you specify at the end of the file name
here will dictate what type of image the plot is saved as. In this case, it will save as a .PNG
(Portable Network Graphics) image file, which is a very standard type of image that most people
and software are used to handling, though you could save it as other common formats as well
(e.g., .JPG, .GIF, .TIFF, etc.). The argument dpi stands for “dots per inch” and specifies the
resolution of the image. For publication quality plots it is generally recommended that you have
a minimum resolution of 300 dpi. Anything less than that will likely produce very noticeable
artifacting or fuzziness, particularly if the image has been resized or magnified. The last three
arguments units , width and height allow you to specify the dimensions of your plot and
should be relatively self-explanatory. If you wanted to, for instance, give the dimensions of your
plot in millimeters you would specify "mm" , inches would be "in" , and so on.

2.8.1 Vector graphics vs. Raster graphics

The above code saved the plot as a .PNG which is a type of “raster” image, meaning it is an image
composed of tiny coloured squares called pixels. The more pixels an image has, the more detail
it can provide (i.e., the higher its resolution). The problem with using raster images though, is
that resizing, stretching, and magnification has deleterious effects on their quality. For instance,

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 78

the image below shows a small section of our 300 dpi graph magnified substantially.

Figure 2.4: Artificating present on our 300 dpi raster image when magnified.

A close inspection reveals jaggedness on the blue line and general blurriness around the
rest of the image’s elements. In academic publications, manuscripts, and presentations, this is
something you want to avoid because, while these problems may not be immediately noticeable at
first glance, they can impact a person’s sensation of the image and, by extension, their opinion of
its creator. Moreover, imperfections like these can be exacerbated in the printing and publishing
process.

Now you might think that a simple remedy would be to increase the dpi to a much higher
value, but this is generally a strategy you want to avoid. There tends to be diminishing returns
with resolution increases and anything beyond 300 dpi is not going to do much for you apart from
ballooning the image’s file size. The optimal strategy is to make use of something called a vector
graphic.

Vector graphics are not really images in the traditional sense; rather, they are more akin to a
set of instructions your computer uses to draw the image. Consequently, a vector-based image can
be resized and magnified as much as you would like and it will never lose its quality. The drawback
to vector graphics is that they do not work too well for highly detailed photographs (e.g., a forested
landscape) and they are not always recognized by software. For instance, the most common types
of vector you will encounter are .PDF, .SVG, and .EPS. Recent versions of Microsoft Word and
PowerPoint will happily accommodate .SVG files, but if you are wanting to use a .PDF or .EPS,
you will be out of luck. Correspondingly, Google Docs and Google Slides will not accept any type
of vector graphic, which is doubly frustrating because these apps will also downscale the resolution
of raster graphics you import. Libre Office’s Writer and Impress applications will accept a .PDF
image, but it converts it to a lower resolution raster graphic when it is imported. Despite these
types of compatibility limitations, if you are able to use vector graphics then you should, because
they will give your work a level polish other people are not likely to have.

79 Scales

To save a file as a vector graphic, the process is the same as before, we just need to modify
the file extension and remove the dpi argument (because dpi has no meaning for vector graphics).

1 ggsave("msleep_plot.svg", units = "cm", width = 20, height = 7)

The above code saved the image as a .SVG (Scalable Vector Graphic) file. This is a commonly
used image file in web design, meaning it will, by default, be most likely displayed within a web-
browser when you open it.

Figure 2.5: Magnification of a vector graphic.

2.9 Scales

A core concept in the “grammar” of ggplot2 is that of scales. Scales control how data is mapped
to different aesthetics. For instance, there are scales for position, colour, size, shape, linetype, and
so on. When we mapped an aesthetic to a variable—like we did above where we had mapped both
colour and shape to the $vore column:

1 ...

2 geom_point(aes(colour = vore, shape = vore))

3 ...

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 80

—ggplot2 automatically chose which colours and shapes got applied to each category, but you can
use functions to override these automatic mappings.

The function you use to make these overrides is going to be dictated by the aesthetic
you want to modify. For instance, to adjust the colour (or edge colour) of a point you could
use the scale_colour_discrete() function or the scale_colour_continuous() function.
If you wanted to adjust the shapes of the points, you could use scale_shape_discrete()

function. If you wanted to adjust the fill colour of something (e.g., the fill colour of points or
the fill colour of bars on a graph), you could use scale_fill_discrete() function or the
scale_fill_continuous() function.

There are a large amount of functions like these and, at this point, you do not need to
concern yourself with all their varieties and how they work. What is important to recognize here
is that each scale function specifies, inside its name, what aesthetic (e.g., colour, shape, fill, etc.)
it is modifying:

scale_<aesthetic name>_<transformation>()

The “transformation” part of the function’s name is intended to describe how the function
modifies the aesthetic which will hopefully become more apparent as we move through some
examples.

2.9.1 Position Scales: Modifying the Axis Breaks

When we first created the grid on to which we drew our points, we had actually mapped some
aesthetics to do this. Specifically, we mapped the x and y aesthetics to the $bodywt and
$sleep_total columns respectively. In other words, we had written:

1 ggplot(data = msleep, aes(x = bodywt, y = sleep_total))

When first mapping the x and y axes of a plot, ggplot2 typically selects an appropriate
sequence of values to display for each. These are what are referred to as axis breaks and, most of
the time, ggplot2’s default scaling for the breaks is excellent. However, there are occasions where
more customized scaling is necessary. In these situations, the following four functions are useful:

1. scale_x_continuous()

2. scale_y_continuous()

3. scale_x_discrete()

4. scale_y_discrete()

The above four functions allow you to easily modify what values appear on your axis; though,
which one you use depends on whether your axis has a continuous or discrete position scale.
Position scales control the location (i.e., x and y) mappings of a plot’s visual elements.

81 Scales

In the case of the mammal sleep data we plotted, both the x-axis scale (body weight)
and y-axis scale (sleep total) are continuous in nature. In other words, the axis values represent
measured numeric values as opposed to categories. Another way of conceptualizing this continuous
vs discrete distinction is to approach it from R’s perspective. In this case, both axes represent
numeric objects as opposed to character objects.

1 mode(msleep$bodywt_log10) # x-axis

2 mode(msleep$sleep_total) # y-axis

[1] "numeric"

[1] "numeric"

Thus, for the purpose of plotting, they are treated as a continuous scale and you would need to
use scale_x_continuous() and scale_y_continuous() respectively. If we had, for instance,
plotted a categorical variable on the x-axis (e.g., the conservation status of the animal) then the
x-axis would be discrete while the y-axis remains continuous (we will see an example of this in
Chapter 3 when we build a bar graph of skulls).

To customize the breaks on our axis, we simply need to add one of the aforementioned
functions to our plot’s code and provide a vector of values we want to see displayed using the
argument breaks . For instance, if we want the x-axis to only display the numbers 1, 2, and 3,
we would add
scale_x_continuous(breaks = c(1,2,3)) to our code (see line 13).

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3) +

3 geom_smooth(

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5

7) +

8 facet_wrap(~vore, nrow = 1) +

9 labs(

10 x = "Log10(Body Weight kg)",

11 y = "Sleep Total (hrs)"

12) +

13 scale_x_continuous(breaks = c(1,2,3))

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 82

carni herbi insecti omni unknown

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
0

5

10

15

20

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

In general, the best practice is not to specify values individually, but rather specify a sequence
using the seq() function we learned about in Chapter 1 (see section 1.4.7). For instance, we
could have the x-axis increment by 1s and the y-axis increment by 2s (see lines 13 and 14).

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3) +

3 geom_smooth(

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5

7) +

8 facet_wrap(~vore, nrow = 1) +

9 labs(

10 x = "Log10(Body Weight kg)",

11 y = "Sleep Total (hrs)"

12) +

13 scale_x_continuous(breaks = seq(-2, 4, 1)) +

14 scale_y_continuous(breaks = seq(0, 20, 2))

carni herbi insecti omni unknown

−2 −1 0 1 2 3 4 −2 −1 0 1 2 3 4 −2 −1 0 1 2 3 4 −2 −1 0 1 2 3 4 −2 −1 0 1 2 3 4
0

2

4

6

8

10

12

14

16

18

20

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

The four scale functions above can achieve a lot more than what is being shown here, but
for most uses, this basic adjustment of the axis breaks will be their primary purpose.

83 Scales

2.9.2 Modifying the Axis Range

In addition to axis break adjustment, the range of the axis will often require customization as
well. To achieve this, the best practice is usually to use the function coord_cartesian() . To
illustrate with some absurd values, we could have the x-axis span between -2 and +1 and have
the y-axis span between −5 and +10.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3) +

3 geom_smooth(

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5

7) +

8 facet_wrap(~vore, nrow = 1) +

9 labs(

10 x = "Log10(Body Weight kg)",

11 y = "Sleep Total (hrs)"

12) +

13 scale_x_continuous(breaks = seq(-2, 4, 1)) +

14 scale_y_continuous(breaks = seq(0, 20, 2)) +

15 coord_cartesian(xlim = c(-2, 1), ylim = c(-5, 10))

carni herbi insecti omni unknown

−2 −1 0 1 −2 −1 0 1 −2 −1 0 1 −2 −1 0 1 −2 −1 0 1

0

2

4

6

8

10

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Note that, while the y-axis goes as low as -5, it does not show breaks below 0 because of how the
breaks argument in scale_y_continuous() were set.

At this point it is worth offering a disclaimer. Within the position scale functions men-
tioned earlier (i.e., scale_x_continuous() and scale_y_continuous()), there is an argu-
ment called limits that will allow you to set the range of the scale in a manner similar to the
coord_cartesian() function. Additionally, ggplot2 also has two other functions, xlim() and
ylim() , that will do the same. However, setting the limits of your plot with these arguments and
functions is best avoided because they will remove data falling outside of those specified limits.
This can result in problems if your plot’s code is performing some type of statistical calculation

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 84

that is dependent on those values. For instance, if you replace lines 13-15 in the above script with
xlim(-2, 1) you will be confronted with a very nasty error message, telling you (among other
things) that ...

Warning messages:

1: Removed 27 rows containing non-finite outside the scale range

(`stat_smooth()`).

2: Removed 27 rows containing missing values or values outside the scale

range (`geom_point()`).

This occurs because values in our data falling outside of −2 and +1 are not recognized any more,
which, by extension means they are not being used by geom_smooth() and geom_point() . Par-
ticularly in the case of geom_smooth() , that will impact how the trend line is calculated. Thus,
the moral of the story is, if you need to “zoom-in” or “zoom-out” on a plot, use coord_cartesian() .
Do not be tempted by those other options.12

2.9.3 Colour Scales: Modifying Colour Mappings

Similar to how ggplot2 automatically selected a scaling for the breaks on the x and y axis, it
also automatically selected various colours to use when we mapped colour to the $vore column.
Moreover, the distinction between continuous and discrete scaling applies just as much to colour
as it does position. As illustrated in Figure 2.6 and 2.7, continuous colour scales are usually
represented with a colour gradient and discrete scales are represented by distinct colours (like
in a box of crayons). While it is possible to do this, you usually do not want to use a gradient
to represent distinct categories because it makes the categories difficult to discriminate visually.
For instance, the $vore column we mapped to the colour aesthetic earlier contained distinct
non-numeric categories (e.g., carni, herbi, insecti, and so on); thus, a colour palette such as that
seen in Figure 2.7 would be much more appropriate than Figure 2.6.

12Readers are probably wondering “what use does removing data outside of the limits serve? It seems like it
would only ever cause more problems than it solves (especially if you are unaware it is happening).” And to that I
say, yes; however, ggplot2 has its reasons. Functions like xlim() , ylim() , and arguments like limits = can
be useful when you want to restrict the data used in calculations, not just what’s shown. This can help speed things
up or focus analyses on a particular range—especially when letting ggplot2 handle things like smoothing or density
estimation. Just be warned: this is a power best wielded carefully.

85 Scales

Figure 2.6: Example of a continuous colour scale (i.e., a colour gradient)

Figure 2.7: Example of a discrete colour scale (a.k.a. a qualitative palette)

2.9.4 Discrete Colour Scales

To illustrate the use of discrete colour scales lets create a simple plot we can experiment with.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, shape = 21, stroke = 2)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

First we will map the edge colour to the column $vore .

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 2,

4 aes(colour = vore)

5)

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 86

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

Then, to override these colours we can simply use scale_colour_discrete() and input a vector
of colours.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 2,

4 aes(colour = vore)

5) +

6 scale_colour_discrete(type = c("red", "blue", "green", "purple", "orange"))

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

The same effect can be achieved by using scale_colour_manual() instead.

1 ...

2 scale_colour_manual(values = c("red", "blue", "green", "purple", "orange"))

However, the advantage to using scale_colour_discrete() is you are not limited by the
number of categories in your palette. This means you can create a bigger colour palette and ggplot2
will only use as many colours as needed. By contrast, if you use scale_colour_manual() , you
have to ensure that you specify the same amount of colours as there are categories. To illustrate,
we can create a palette with eight colours, but ggplot2 will only use the first six.

87 Scales

1 # Create a colour palette

2 palette <- c(

3 "#000000", "#DF536B", "#61D04F", "#2297E6", "#28E2E5", "#CD0BBC", "#F5C710",

4 "#9E9E9E"

5)

6

7 # Use that palette in your plot

8 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

9 geom_point(

10 size = 3, shape = 21, stroke = 2,

11 aes(colour = vore)

12) +

13 scale_colour_discrete(type = palette)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

Notice that we are using pch 21 as our shape. Recall that this shape takes both an edge
and fill colour (see Figure 2.3). At present, we have not specified a fill colour, so the points are
hollow. However, instead of modifying the edge colour like we have been doing, we could modify
the fill colour of the points and just keep the edges black.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 1, colour = "black",

4 aes(fill = vore)

5) +

6 scale_fill_discrete(type = palette)

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 88

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

Notice where the important changes have taken place in the code. We have moved the colour

aesthetic outside of the aes() function. This means a single colour (black) will now be mapped
to all the points. We have also mapped the $vore column to the fill aesthetic inside of aes()

and, for that reason, now specify scale_fill_discrete() to modify the colour options. In other
words, we are now adjusting the fill colour, not the point/edge colour.

Pre-Existing Discrete Colour Palettes

Until now, we have been specifying our own custom colour palettes; however, base R contains a
variety of pre-existing palettes we can make use of. To obtain the list you can simply run the
following:

1 palette.pals()

[1] "R3" "R4" "ggplot2" "Okabe-Ito"

[5] "Accent" "Dark 2" "Paired" "Pastel 1"

[9] "Pastel 2" "Set 1" "Set 2" "Set 3"

[13] "Tableau 10" "Classic Tableau" "Polychrome 36" "Alphabet"

Of note, palettes "R4" , "Okabe-Ito" , "Dark 2" , "Paired" , and "Set 2" , are all
decently robust under conditions of colour vision deficiency. To obtain a vector of the hex codes
used for a specific palette, you can just run palette.colors(n = NULL, "Dark 2") , but it is
usually more convenient to insert this function directly into ggplot2. Figure 2.8 illustrates the
colours employed in each palette - only eight colours are shown but some do contain more.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 1, colour = "black",

4 aes(fill = vore)

5) +

6 scale_fill_discrete(type = palette.colors(n = NULL, "Dark2"))

89 Scales

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

2.9.5 Continuous Colour Scales

Continuous colour scales operate more or less in the same manner as discrete ones; however, to
illustrate them, we need to map colour to a continuous variable. In the msleep data, there is
a column called $brainwt which, similar to $bodywt , is a continuous measure. To visualize it
adequately we will need to log transform it as well. For simplicity we will do this directly in the
plot’s code:

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 1, colour = "black",

4 aes(fill = log10(brainwt))

5)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

log10(brainwt)

−3

−2

−1

0

Immediately you can see we are now presented with a colourbar instead of a set of fixed
colours. This is because the nature of the variable $brainwt is that it is continuous. Thus, it
does not fall neatly into distinct categories. Between any two brain weights there is a theoretically
infinite amount of values and the colourbar’s gradient offers a means of representing that. As you
move from black to blue, lighter shades of blue are indicative of a heavier brain weight. Looking

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 90

R3: 8 colours R4: 8 colours

ggplot2: 8 colours Okabe−Ito: 9 colours

Accent: 8 colours Dark 2: 8 colours

Paired: 12 colours Pastel 1: 9 colours

Pastel 2: 8 colours Set 1: 9 colours

Set 2: 8 colours Set 3: 12 colours

Tableau 10: 10 colours Classic Tableau: 10 colours

Polychrome 36: 36 colours Alphabet: 26 colours

Figure 2.8: Examples of the various discrete colour palettes in base R.

91 Scales

at the graph, increases in body weight also seem to correspond to increases in brain weight, but
notice the grey points in the graph. Those are indicative of missing values in the $brainwt

column and with a bit of R code, we can filter the data to see what values these are specifically.

1 filter(msleep, is.na(brainwt))

In case it is not obvious, this code works by using the is.na() function to check whether
each row in the msleep data frame’s $brainwt column contains an NA value. Rows which
result as TRUE are displayed and everything else is ignored. This leaves us with a data frame of
27 different animals, all of which have a NA value in the $brainwt column.

If you are left unsatisfied by the default black to blue gradient, ggplot2 makes it easy to pro-
duce custom colour gradients using the scale_fill_gradient() and scale_fill_gradient2()

functions, and of course there are colour aesthetic variants of this for situations where you want to
modify the edge and point colours.13 Both functions simply require you to specify a low colour
argument that represents the bottom of the colourbar and a high colour argument that represents
the top of the colour bar. However, scale_colour_gradient2() also requires you to specify the
argument mid , which indicates a third midpoint colour. You can even specify the location of this
midpoint with the argument midpoint . More succinctly scale_colour_gradient() creates
sequential colour palettes, and scale_colour_gradient2() creates diverging colour palettes.

In addition to those main arguments, you can also specify what colour you would like NA

values to be represented by and set the the breaks that appear on the colourbar. These are given
by the arguments na.value and breaks respectively.

1 # scale_colour_gradient example

2 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

3 geom_point(

4 size = 3, shape = 21, stroke = 1, colour = "black",

5 aes(fill = log10(brainwt))

6) +

7 scale_fill_gradient(

8 low = "blue",

9 high = "red",

10 na.value = "green",

11 breaks = seq(-4, 1, 1)

12)

13These are scale_colour_gradient() and scale_colour_gradient2() .

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 92

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

log10(brainwt)

−3

−2

−1

0

With the mammal sleep data, there is no logical reason to plot a midpoint colour using
scale_colour_gradient2() but to illustrate its use we will depict a midpoint using the colour
"grey" and we will place it at a log10(brain weight) = −1.5.

1 # scale_colour_gradient2 example

2 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

3 geom_point(

4 size = 3, shape = 21, stroke = 1, colour = "black",

5 aes(fill = log10(brainwt))

6) +

7 scale_fill_gradient2(

8 low = "blue",

9 mid = "grey",

10 high = "red",

11 midpoint = -1.5,

12 na.value = "green",

13 breaks = seq(-4, 1, 1)

14)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

log10(brainwt)

−3

−2

−1

0

93 Scales

Pre-Existing Continuous Colour Palettes

Similar to what we saw with discrete colour scales, R comes with a set of continuous colour
palettes we can use, some of which are sequential and some of which are diverging. For those
interested, these palettes are based around an HCL (hue-chroma-luminance) colour space model
which confers some advantages over the HSV (hue-saturation-value) colour space model computers
have traditionally employed (Zeileis & Murrell, 2019).

To obtain a list of these HCL palettes you can simply run any of the following lines for
sequential, diverging, and qualitative palettes respectively.

1 hcl.pals(type = "sequential")

2 hcl.pals(type = "diverging")

3 hcl.pals(type = "qualitative")

The qualitative palettes work best for discrete scales (i.e., identifying distinct categories)
where you want each category to have equal perceptual weight. These are not much use for our
present purposes but are notable because they are based on a HCL colour space model. That means
we are not limited by the amount of colours in the palette like we were with R’s standard discrete
colour palettes (see section 2.9.4). Though, anecdotally, when you go beyond 6 categories the
HCL qualitative palettes’ colours start to become more and more difficult to discriminate between
(even with standard colour vision). Interestingly, ggplot2’s default discrete colour selection relies
on a similar underlying theory.

To retrieve the hex codes for a given palette (e.g., "Inferno"), you will need to specify
not only the palette name but also the number of colours you want using the n argument.
This determines the granularity of the palette—higher values yield a more finely graded colour
spectrum. That said, for most practical purposes, distinctions beyond 4 or 5 colours tend to
become visually negligible with the sequential and diverging palettes. Visual examples of all three
HCL palette types can be found in Appendix B.

1 hcl.colors(n = 8, palette = "Inferno")

[1] "#040404" "#341348" "#701069" "#AB1E75" "#DC4962" "#F58426" "#F8C149" "#FFFE9E"

To use one of base R’s HCL colour palettes in our plot we can use the function
scale_fill_gradientn() to set our palette. The function just takes a vector of colours and
extrapolates a gradient from that.

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 94

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 1, colour = "black",

4 aes(fill = log10(brainwt))

5) +

6 scale_fill_gradientn(

7 colours = hcl.colors(n = 50, palette = "Inferno"),

8 na.value = "grey",

9 breaks = seq(-4, 1, 1)

10)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

log10(brainwt)

−3

−2

−1

0

2.9.6 Shape Scales

We know that relying solely on colour to visually discriminate categories is inadvisable due to
colour vision deficiencies people may have; thus, in addition to adjusting the colour scales, we can
also adjust the shape scale simultaneously by mapping $vore to both shape and fill within
the aes() function. For the shapes we will use the pch symbols 21 - 24 and also have the category
“unknown” be represented by pch 13 (see Figure 2.3) - recall that these particular symbols (21 -
24) take both a colour and fill aesthetic. We will keep the edges (i.e., colour aesthetic) black but,
for the fill aesthetic, we will use the "R4" colour palette (see Figure 2.8).

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, stroke = 1, colour = "black",

4 aes(fill = vore, shape = vore)

5) +

6 scale_shape_manual(values = c(21:24), na.value = 13) +

7 scale_fill_discrete(type = palette.colors(n = NULL, "R4"))

95 Scales

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

2.9.7 Legend Titles

In all the examples above, the legend that ggplot2 produced has always been titled with the name
of the column it is representing. For instance, when we mapped the categories in the $vore

column it was titled “vore.” When we mapped log10(brainwt) , it was titled “log10(brainwt).”
To adjust the name of the legend, each scale function we have used also takes a name argument
which will dictate how the legend is titled. For instance, keeping with the above example, we could
adjust the legend title to read ”Diet”.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, stroke = 1, colour = "black",

4 aes(fill = vore, shape = vore)

5) +

6 scale_shape_manual(values = c(21:24), na.value = 13, name = "Diet") +

7 scale_fill_discrete(type = palette.colors(n = NULL, "R4"), name = "Diet")

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

Diet

carni

herbi

insecti

omni

unknown

In this example, we have two scales in our legend, the shape scale and the fill scale.
If you do not specify an identical name for each, they will be treated as separate legends. For
instance, try giving scale_shape_manual() a different name than scale_fill_discrete()

and see what happens.

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 96

An alternative method for renaming your legend is to add the function labs() to your
plot’s code and specify the name of each scale as a separate argument.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, stroke = 1, colour = "black",

4 aes(fill = vore, shape = vore)

5) +

6 scale_shape_manual(values = c(21:24), na.value = 13) +

7 scale_fill_discrete(type = palette.colors(n = NULL, "R4")) +

8 labs(

9 shape = "Diet",

10 fill = "Diet"

11)

2.9.8 Other Scales

In the sections above, we have only considered the position, colour, fill, and shape scales, which
are among the features most frequently appealed to when graphing, but similar functions exist
for other scales. For instance, there are scale functions to modify the size, linewidth, and linetype
aesthetics if needed. To learn more about these and other features, an excellent resource is the
tidyverse’s official ggplot2 website, which contains a learning section that will direct you to various
excellent resources (https://ggplot2.tidyverse.org/), the best and most comprehensive of which is
the official manual for ggplot2 titled “ggplot2: Elegant Graphics for Data Analysis.” Keeping with
the ethos of “free software”, this is available to read online for free at

https://ggplot2-book.org/

2.10 Modifying Other Non-data Components

One thing that will be apparent is that ggplot2 has a very specific “look” to it, and that look is not
arbitrary. It was crafted meticulously on the basis of expert advice. In the language of ggplot2,
this look is what is referred to as a theme. Specifically, we are seeing theme_grey() and in the
dark master’s own words:

The theme is designed to put the data forward while supporting comparisons, following the

advice of Tufte 2006; Brewer 1994; Carr 2002, 1994; Carr and Sun 1999. We can still see the

gridlines to aid in the judgement of position (Cleveland, 1993), but they have little visual im-

pact and we can easily “tune” them out. The grey background gives the plot a similar ty-

pographic colour to the text, ensuring that the graphics fit in with the flow of a document

without jumping out with a bright white background. Finally, the grey background creates

a continuous field of colour which ensures that the plot is perceived as a single visual entity.

https://ggplot2.tidyverse.org/
https://ggplot2-book.org/

97 Modifying Other Non-data Components

- Wickham et al., 2024

To sum up, the grey theme is immaculate in its conception and cannot be improved upon. In fact,
once one has borne witness to the majesty of theme_grey() , even small departures from it can
have drastic effects on a person’s physical and mental well being. That being said, ggplot2 still
offers its users the ability to modify any aspect of the plot they wish - just be careful what you
wish for.

2.10.1 Built-in Themes

Once the scaling and other main visual elements related to data presentation are complete, it is
often helpful to set your plot’s code as a variable you can append other elements to. Meaning
that, in the same way a number in R is an object that you can name and add things to - e.g.,

1 x <- 1

2 x + 2

[1] 3

your plot is also an object (just a very complex one) that you can add things to. For instance, on
the first line of our plot’s code, right before the function ggplot() , we could give our plot the
name my_plot .

1 my_plot <- ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, colour = "black",

4 aes(fill = vore, shape = vore)

5) +

6 scale_shape_manual(values = c(21:24, 13)) +

7 scale_fill_discrete(type = palette.colors(n = NULL, "R4")) +

8 labs(

9 x = "Log10(Body Weight kg)",

10 y = "Sleep Total (hrs)",

11 shape = "Diet",

12 fill = "Diet"

13)

Now, when you run my_plot you can see it output to the plot window.

1 my_plot

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 98

5

10

15

20

−2 0 2 4
Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

The quickest way to modify the overall appearance of your plot - which works well as a
starting point for other modifications you want to make - is to use one of ggplot2’s built in themes
shown in Figure 2.9. Simply add the theme’s function to your plot’s code. For instance, if you
wanted to use the black and white theme, theme_bw() , you would run ...

1 my_plot + theme_bw()

Additional pre-built themes can be accessed via other R packages, such as ggthemes.

2.10.2 Customizing Themes

Obtaining a more fine-grained control over the visual elements will require the use of ggplot2’s
theme() function. Admittedly, there is so much customization possible here that an exhaustive
explanation would require at least an additional chapter’s worth of content. For simplicity, we
will restrict the discussion to axis text modifications. This should illustrate the overall process
well-enough and generalize nicely across the plot’s numerous other elements. That being said,
readers looking to adjust these other elements will still need consult documentation of some kind
for specifics. The official ggplot2 manual is unquestionably the best resource in this respect:

https://ggplot2-book.org/themes.html#sec-theme-elements

To modify the axis text, we first need to specify, within the theme() function, the name
of the element we want to modify. In this case, since we want to modify both the x and y axis,
we will specify axis.text . Then we need to specify a function to modify this element we have
chosen. In this case, since we want to modify text, we will use the function element_text() .
Within that, we can specify numerous arguments related to the text. For a full list of arguments,
it is highly recommended that the reader consult the R documentation: ?element_text()

https://ggplot2-book.org/themes.html#sec-theme-elements

99 Modifying Other Non-data Components

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_grey()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_bw()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_linedraw()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)
Diet

carni

herbi

insecti

omni

unknown

theme_light()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_dark()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_minimal()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_classic()

Diet

carni

herbi

insecti

omni

unknown

theme_void()

Figure 2.9: Visual examples of the eight built-in themes ggplot2 provides.

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 100

1 my_plot + theme_bw() +

2 theme(

3 axis.text = element_text(size = 18, face = "bold", colour = "red", angle = 45)

4)

5

10

15

20

−2 0 2 4
Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

Notice that the code affected both axes; however, if we want to affect a change for only one
axis (e.g., the x-axis) we just specify the element as axis.text.x . This will also allow us to
include a margin argument to affect the spacing around the text.

1 my_plot + theme_bw() +

2 theme(

3 axis.text.x = element_text(

4 size = 18, face = "bold", colour = "red", angle = 45,

5 margin = margin(t = 1, r = 0, b = 0, l = 0, unit = "cm")

6)

7)

5

10

15

20

−2 0 2 4
Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

101 Modifying Other Non-data Components

A similar logic applies to the axis title. In that case we would modify the axis.title ele-
ment. And again, if we wanted to modify the x-axis title specifically, we would use axis.title.x .
The y-axis title would of course be axis.title.y .

1 my_plot + theme_bw() +

2 theme(

3 axis.text.x = element_text(

4 size = 18, face = "bold", colour = "red", angle = 45,

5 margin = margin(t = 1, r = 0, b = 0, l = 0, unit = "cm")

6),

7 axis.title.y = element_text(

8 size = 18, face = "italic", colour = "deepskyblue3", angle = 90

9)

10)

5

10

15

20

−2 0 2 4
Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 102

2.11 A Final Note

In the plots created above, we have gone through how to adjust a wide variety of elements but
there are two adjustments that have not been discussed:

1. How do you change the order of the categories? For instance, suppose we wanted “herbi” to
be at the top of the “Diet” legend. Or suppose we wanted it to come first in our sequence
of faceted plots we created in section 2.6. How can we make that happen?

2. How do we adjust the names of the categories? Each category of vore/diet was labelled
using the shortened version contained in the data set, but what if we wanted to write out
each category in its entirety? E.g., display “carnivore” instead of “carni”, and “herbivore”
instead of “herbi”, and so on.

The answer to both these questions requires first understanding “factors,” which will be
explained in the next chapter.

Chapter 3

The Invocation andMetamorphosis of Data

K
NOWLEDGE is power as they say, but data—data is something else entirely. It is

the ghost in the machine, the thing lurking beneath the surface, waiting for you to

look too close. Heed this warning: The data frame, and its accursed successor the

tibble, are your most loyal servants … and your most treacherous foes. Treat them

with reverence, for a single misstep may awaken errors best left entombed.

Chapter 1 had stated that data frames are essential for keeping a host of related information
stored in a well organized manner that is easy to manipulate. When printed to the console, data
frames present information in a familiar spreadsheet-like structure that can be created, subset,
and altered in various ways (see section 1.4.10 for details). Moreover, in chapter 1, we saw how
a data frame can be constructed by manually entering values with R code. And, for all but the
smallest of data sets, this method, while simple, is both time-consuming and highly prone to error.
A better strategy is to take an existing file of information and import that directly into R as a
data frame or, depending on the nature of the data and what needs to be done with it, as a list,
matrix, array, or table. Though, a data frame is usually going to be the optimal choice and will
be the primary focus of this chapter.

Data can come in all manner of different layouts and file formats and, in this respect, R
has the ability to handle pretty much any scenario that might arise. This chapter will be working
under the assumption that the kind of data that you need to work with is in a conventional
“spreadsheet-style” of format. That is to say, like the msleep data used in Chapter 2, there are
sets of rows and columns, with each cell containing just a single value.

103

3. The Invocation and Metamorphosis of Data 104

3.1 Spreadsheet Software

Given the ubiquity of spreadsheet software, it is important to discuss its use and why R offers
a preferable alternative for data analysis. Most spreadsheet applications have their own specific
file type that is tailored to its unique purpose and platform. For instance, Microsoft’s Excel
spreadsheet application has its own proprietary format called the .xlsx file format. The awful
stock spreadsheet application on Macintosh computers, called Numbers, uses the .NUMBERS file
format. And if you use an open-source spreadsheet software like Libre Office’s Calc application,
you may be familiar with the .ods file format.

As everyone who is reading this doubtlessly appreciates, spreadsheet applications like Mi-
crosoft’s Excel, Numbers, Libre Office’s Calc, etc., do more than just structure your data in a
big table. They allow you to do things like perform calculations, adjust cell colours, add images,
insert comments, etc. And all of this is saved, in one form or another, as information inside the
specific file associated with that software. These features make applications like Microsoft’s Excel,
for instance, a great tool for basic tasks like balancing the household budget. However, for serious
data analysis that requires the use of large data sets and complex or heavy calculations, this kind
of software is going to be more of a hindrance than a help. Incorporating all those layers of addi-
tional functionality is going to boost file sizes, inflate load times, limit the amount of information
the spreadsheet can hold, and increase the chance of a glitch occurring. Additionally, and most
importantly, both the analyses and the data are all contained within the same file, which makes
it very easy to irrevocably damage your original data set, often without even realizing it. The
fact is, we should care about analysing our data efficiently and safely, not making it look pretty
in what amounts to a fancy table, and this is one of the key benefits of using R.

From the point of view of R, a spreadsheet is just a way of displaying the raw information
to be analysed and nothing more. The analysis of that information is what R does. Technically
then, we should not be referring to something as a “spreadsheet file,” but rather a “data file.”
The spreadsheet aspect of all of this is more about how the data is structured for our viewing
as humans. However, data does not necessarily need to be viewed as a spreadsheet - it can be
viewed in all kinds of different ways. It is just that a spreadsheet is usually the most convenient
and intuitive way to view it and talk about it.

3.2 Using an Ethical File Format

As noted above, there are a variety of different spreadsheet file types data could be formatted as
(.xlsx, .ods, .wks, etc.). To remain consistent with open-science principles (UNESCO, 2021),
best practice dictates that you work with your data in a file format that is both universally
recognized across applications and will also stand the test of time in terms of compatibility. In
other words, we want to (ideally) work with a file format that has no immediate risk of becoming

105 The .CSV Format

obsolete and can be read by multiple computers on multiple platforms without forcing the user
to pay for some proprietary application. Along these lines, the most widely used and recognized
format is the .csv file format.

3.3 The .CSV Format

“CSV” stands for “comma separated values.” It gets its name from the fact that it is, quite literally,
nothing more than a generic text document that uses commas to denote a tabular (spreadsheet)
structure in the data.1 This is easiest to see with an example. The GitHub repository for this book
contains a file called skull_cap_partial_wide.csv . It is located in the ./data directory at
the following URL:

https://github.com/statistical-grimoire/thomson-randallmaciver-1905

This data represents a subset of a much larger dataset,2 containing estimated cranial capacities
in cubic centimetres for 1,449 ancient Egyptian skulls.3 These skulls span numerous historical
periods, ranging from Egypt’s early predynastic era to its Roman occupation.

Upon opening the file on GitHub, the contents appear in a standard tabular format, resem-
bling a typical spreadsheet (see Table 3.1 for an example displaying the first ten rows). With the
exception of the columns labelled sex and predynastic , each column header corresponds to
the starting year of an approximate date range, as reported by the original authors. The prefix c
denotes circa (meaning “approximately”), followed by a year and the abbreviation BC (“Before
Christ”), reflecting the historical dating conventions employed by the original authors. A more
contemporary and inclusive alternative would be BCE (“Before Common Era”). The term pre-
dynastic refers to periods preceding the earliest recorded Egyptian dynasties, which, at the time
of Thomson and Randall-MacIver’s (1905) research, were not yet clearly established or reliably
dated.

While GitHub nicely formats the file as a spreadsheet for viewing, the actual raw data
consists of nothing more than a basic text document that separates individual values with a
comma. We can see this more clearly if we click the button on GitHub labelled “Raw” which will
present the file in its unaltered (i.e., raw) text format. The first 10 rows can be seen below:

1“Tabular” and “spreadsheet” mean the same thing here.
2
Thomson_Randall-MacIver_1905.csv

3This is not necessarily a statistic anyone should care about, but Ancient Egypt is really cool and skulls are
metal AF. Also, for any Americans reading this, 1 centimetre is equal to 1.181 barleycorns.

https://github.com/statistical-grimoire/thomson-randallmaciver-1905

3. The Invocation and Metamorphosis of Data 106

sex predynastic c4800BC c4200BC c4000BC c3700BC c3500BC c2780BC c1590BC c378BC c331BC

Male 1370 1410 1320 1445 NA 1395 1425 1440 1310 1450
Male 1250 1445 1565 1540 NA 1420 1505 1355 1395 1460
Male 1430 1440 1600 1565 NA 1380 1360 1490 1360 1360
Male 1350 1340 1460 1710 NA 1260 1385 1425 1485 1410
Male 1130 1460 1520 1690 NA 1285 1350 1380 1365 1215

Male 1670 1290 1440 1775 NA 1505 1440 1490 1220 1320
Male 1195 1290 1740 1390 NA 1230 1400 1385 1195 1550
Male 1500 1385 1410 1620 NA 1250 1255 1270 1410 1320
Male 1325 1290 1510 1500 NA 1315 1450 1585 1370 1460
Male 1480 1565 1550 1255 NA 1360 1310 1330 1365 1560

Table 3.1: First ten rows of skull_cap_partial_wide.csv , displaying estimated cranial capacity (cm3).

sex,predynastic,c4800BC,c4200BC,c4000BC,c3700BC,c3500BC,c2780BC,c1590BC,c378BC,c331BC
Male,1370,1410,1320,1445,,1395,1425,1440,1310,1450
Male,1250,1445,1565,1540,,1420,1505,1355,1395,1460
Male,1430,1440,1600,1565,,1380,1360,1490,1360,1360
Male,1350,1340,1460,1710,,1260,1385,1425,1485,1410
Male,1130,1460,1520,1690,,1285,1350,1380,1365,1215
Male,1670,1290,1440,1775,,1505,1440,1490,1220,1320
Male,1195,1290,1740,1390,,1230,1400,1385,1195,1550
Male,1500,1385,1410,1620,,1250,1255,1270,1410,1320
Male,1325,1290,1510,1500,,1315,1450,1585,1370,1460
Male,1480,1565,1550,1255,,1360,1310,1330,1365,1560

Example of the skull_cap_partial_wide.csv data file displayed in its raw text format. Only the first ten rows
are shown.

Comparing the two versions it can readily be seen how the commas are functioning. They
separate individual columns and each new line represents a new row in the spreadsheet. This not
only makes it easy to read .csv files within a basic text editor, but create them as well. Just save
(or rename) the text document with a .csv file extension (which you may need to configure your
computer to display). Alternatively, if you have a good spreadsheet software on your computer,
it will have the ability to “Save As” a .csv file or “Export” to one. For instance, the save menu
of Microsoft Excel will present the user with a drop down list of potential file types it can save as
and (as of writing this) has four different versions of .csv files (the best option is the one labelled
“UTF-8 Comma delimited”). By contrast the Numbers application on a Mac will not permit a
spreadsheet to save as anything other than a .NUMBERS file, but will allow you to export your
saved spreadsheet as a .csv. Just select File → Export To → CSV.

107 Delimiters

3.4 Delimiters

In the case of the skull_cap_partial_wide.csv file, the comma is functioning as a delimiter;
which is to say it is a character that defines the limits of (i.e., it “delimits”) individual values.
Commas are not the only characters that can be used to delimit, any character can technically be
used. Other common delimiters include semicolons (;) and tab-key spaces. Semicolons are often
used when the data is logged with commas representing decimal points instead of periods (e.g.,
13.666 = 13,666), which is a frequent practice in many countries. Oddly, when a delimited file
uses semicolons, it is still often given a .csv file extension despite it being a completely different
character. In R, to avoid confusion, the convention is to refer to these semicolon delimited files
as csv2 files in function names (e.g., read_csv() would use a comma to delimit whereas
read_csv2() would use a semicolon).

Tab spaces (i.e., pressing “tab” on your keyboard), are also frequently employed as a delim-
iter, but these are usually denoted as .tsv files (i.e., tab separated values). In fact, the name for
the keyboard key “tab” comes from the the verb “tabulate” because the key facilitated easier gen-
eration of tables when working on a typewriter. Prior to the tab key’s development, the space bar
had to be repeatedly pressed to advance the typewriter’s carriage to align columns appropriately.

If you were to save the skull_cap_partial_wide.csv data set as a .tsv file and open it
within a generic text editor, you would see something very similar to the following ...

sex predynastic c4800BC c4200BC c4000BC c3700BC c3500BC c2780BC
Male 1370 1410 1320 1445 NA 1395 1425 1440 1310 1450
Male 1250 1445 1565 1540 NA 1420 1505 1355 1395 1460
Male 1430 1440 1600 1565 NA 1380 1360 1490 1360 1360
Male 1350 1340 1460 1710 NA 1260 1385 1425 1485 1410
Male 1130 1460 1520 1690 NA 1285 1350 1380 1365 1215
Male 1670 1290 1440 1775 NA 1505 1440 1490 1220 1320
Male 1195 1290 1740 1390 NA 1230 1400 1385 1195 1550
Male 1500 1385 1410 1620 NA 1250 1255 1270 1410 1320
Male 1325 1290 1510 1500 NA 1315 1450 1585 1370 1460
Male 1480 1565 1550 1255 NA 1360 1310 1330 1365 1560

Excerpt of the skull_cap_partial_wide.csv file displayed in raw text format as if it were a .tsv. Only the first
10 rows are shown; the last three column headers (c1590BC, c378BC, and c331BC) are omitted for space.

Notice that the tabular separation gives the file a much more grid-like aesthetic that is easier to
read. Incorporating spaces into the text file can be used to further refine the alignment.

3. The Invocation and Metamorphosis of Data 108

3.5 Reading a CSV File into R

Now that we have a good sense of what a .csv file is, we should discuss how to load it into R
as a data frame object so we can conduct our analyses. To begin with, you should download
skull_cap_partial_wide.csv from the aforementioned GitHub repo by simply clicking the
“down arrow” icon labelled “Download raw file.” Once downloaded, simply place the file inside
your working directory.4 Depending on the browser you are using you may have to hunt around
for the download option. For instance, if you are using Safari, you may have to select “more file
actions.”

With the file in its appropriate location you can simply run the function read_csv() and
give it the full name (with extension) of your file as a character string. This will create a data
frame object in R. However, read_csv() is a function that belongs to the readr package which
is part of the tidyverse, so if you do not have the tidyverse loaded, this will not work. In order to
easily call our loaded data, we will assign it the name skulls .

1 library(tidyverse)

2 skulls <- read_csv("skull_cap_partial_wide.csv")

Rows: 343 Columns: 11

── Column specification ──

Delimiter: ","

chr (1): sex

dbl (10): predynastic, c4800BC, c4200BC, c4000BC, c3700BC, c35...

i Use `spec()` to retrieve the full column specification for this data.

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Running the above code presents us with some useful information about the data set we
have loaded. We can see that it has 343 rows and 11 columns, uses a , as a delimiter. One
column, sex , consists of character (chr) values and the remaining 10 columns consist of dbl

values, which is a shorthand way of referring to double-precision number. To simplify a complex
story, R has multiple types of numeric objects; i.e., it has multiple ways of representing a number.
A double, as its often referred to, is one such representation. If that is confusing, don’t worry,
what is important to take away from the output is that dbl means the column contains numeric
values (i.e., we can use them to do mathematics).

4If you are unsure what a “working directory” is see section 1.7

109 Reading a CSV File into R

Running skulls will print the data frame to the console.

1 skulls

A tibble: 343 × 11

sex predynastic c4800BC c4200BC c4000BC c3700BC c3500BC c2780BC

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Male 1370 1410 1320 1445 NA 1395 1425

2 Male 1250 1445 1565 1540 NA 1420 1505

3 Male 1430 1440 1600 1565 NA 1380 1360

4 Male 1350 1340 1460 1710 NA 1260 1385

5 Male 1130 1460 1520 1690 NA 1285 1350

6 Male 1670 1290 1440 1775 NA 1505 1440

7 Male 1195 1290 1740 1390 NA 1230 1400

8 Male 1500 1385 1410 1620 NA 1250 1255

9 Male 1325 1290 1510 1500 NA 1315 1450

10 Male 1480 1565 1550 1255 NA 1360 1310

i 333 more rows

i 3 more variables: c1590BC <dbl>, c378BC <dbl>, c331BC <dbl>

i Use `print(n = ...)` to see more rows

You can now subset and manipulate the data frame skulls like was done in Chapter 1
when we first discussing data frames (see section 1.4.10). For instance, if we wanted to look at
the mean breadth of skulls from the predynastic period, we could simply run:

1 mean(skulls$predynastic, na.rm = TRUE)

[1] 1320.142

One thing that is not apparent from the ten row output is that all of the numeric columns contain
some missing, NA , values—hence the need to specify na.rm = TRUE .

read.csv() vs. read_csv()

To load the skulls data frame above, we used the function read_csv() , which is part of
the tidyverse. However, base R has a similar function, read.csv() , that will do essentially
the same thing—it will read a .csv file into R. For most use cases there is little advantage to
adopting one function over the other but, if you have the tidyverse loaded, you may as well use
read_csv() because it does have some advantages over its predecessor. First, it offers excellent
customization options, which are particularly useful when loading very large datasets or merging
multiple datasets. Second, it alerts you to any issues encountered during the loading process.
Third, it performs much faster under heavy loads than its base R counterpart, even providing a
progress bar when reasonable to do so. Finally, instead of a data frame, it stores the data as a
tibble, which will be discussed later.

3. The Invocation and Metamorphosis of Data 110

3.5.1 Reading Other File Types into R

If your data is delimited by some character other than a comma (e.g., a semicolon, tab, backslash,
etc.), there is a more general function that can be employed called read_delim() which allows
you to specify any delimiter (i.e., separator) using the argument delim . For instance, we could
have loaded the skulls data in the following way:

1 skulls <- read_delim("Max_Breadth_TRM_1905.csv", delim = ",")

If your text document was separated by semicolons you would just include delim = ";" , if it
was separated using tabs you would just delim = "\t" , and so on.

One thing that is worth appreciating about delimited files is that their file extension (e.g.,
the .csv or .tsv at the end of the file name) is irrelevant to how R reads the file. As has been
previously emphasized, .csv files and .tsv files for instance, are just generic text documents,
nothing more. This means you may see them with the file extension .txt, but that will not
impact how any of the above functions operate.

Now, what would you do if you wanted to load a Microsoft Excel spreadsheet file (i.e., a
.xlsx file) into R directly? Well as per the discussion on spreadsheets and ethical file formats
(see section 3.1 and 3.2), the best practice is to save it as a .csv using Excel and load that new
file directly into R. However, should you wish to eschew this advice, the tidyverse does have a
package called readxl with functions that will allow you to do this. This is not part of the nine
core packages, so it will need to be loaded using the library() function. A word of warning is
in order though. As well made as the readxl package is, reading .xlsx files directly will, almost
certainly, cause more problems than it solves. These files are not intended to be read by anything
other than Excel and Microsoft does not want them read by anything other than Excel. Thus, by
loading the .xlsx file directly into R, you are (computationally speaking) picking an unnecessary
fight with Microsoft. Nine times out of ten, you will win that fight thanks to readxl, but you will
still probably end up with some nasty bruises and scars.

111 Tibbles vs. Data Frames

3.6 Tibbles vs. Data Frames

In the output for skulls (and the msleep data from chapter 2) you can see that the output
printed to the console specifies that we are looking at something called a tibble. The output also
helpfully displays the dataset’s dimensions and the class of object contained within each column.
This is in contrast to the data frame created in chapter 1, which did not do any of that for us. In
the tidyverse’s own words, a tibble is a ...

modern reimagining of the data.frame, keeping what time has proven to be effective, and

throwing out what is not. Tibbles are data.frames that are lazy and surly: they do less (i.e.

they don’t change variable names or types, and don’t do partial matching) and complainmore

(e.g. when a variable does not exist). This forces you to confront problems earlier, typically

leading to cleaner, more expressive code. Tibbles also have an enhanced print() method

which makes them easier to use with large datasets containing complex objects.

- https:// tibble.tidyverse.org/ (2024/07/28)

In terms of basic usage, tibbles function almost identically to the classic data frame discussed
in chapter 1. For instance, with the tidyverse loaded, we can re-create chapter 1’s data frame as
a tibble using an identical syntax.

1 df <- tibble(

2 Subject = 1:10,

3 Group = c("Exp", "Cont", "Exp", "Cont", "Exp", "Exp",

4 "Cont", "Exp", "Cont", "Cont"),

5 Value = c(-0.36, 0.28, 1.54, 0.51, -1.28, 1.15,

6 -2.22, -0.51, NA, -1.04)

7)

8

9 df

A tibble: 10 × 3

Subject Group Value

<int> <chr> <dbl>

1 1 Exp -0.36

2 2 Cont 0.28

3 3 Exp 1.54

4 4 Cont 0.51

5 5 Exp -1.28

6 6 Exp 1.15

7 7 Cont -2.22

8 8 Exp -0.51

9 9 Cont NA

10 10 Cont -1.04

https://tibble.tidyverse.org/

3. The Invocation and Metamorphosis of Data 112

There are a number of interesting differences between tibbles and data frames, but nothing that
merits any in depth discussion for a beginner with R. For the most part they behave identically.
However, there is one difference worth mentioning: for tibbles, indexing a single column by spec-
ifying row and column values outputs a tibble. For example, suppose we use our index brackets,
[] , to isolate the first 5 rows of column 3 in the skulls data.

1 skulls[1:5, 3]

A tibble: 5 × 1

c4800BC

<dbl>

1 1410

2 1445

3 1440

4 1340

5 1460

This seems sensible enough behaviour, but is in contrast to the traditional behaviour of R’s data
frame which will output a vector unless more than one column is selected.

1 # Using read.csv to load the data as a data frame

2 skulls_df <- read.csv("skull_cap_partial_wide.csv")

3

4 skulls_df[1:5, 3]

[1] 1410 1445 1440 1340 1460

This may seem to be a trivial distinction; however, operations such as computing the mean
of a column are quite common and often require inserting a numeric vector. Consequently, when
the output is a tibble rather than a numeric or logical vector, attempting such operations results
in an error.

1 mean(skulls[1:5, 3])

[1] NA

Warning message:

In mean.default(skulls[1:5, 3]) :

argument is not numeric or logical: returning NA

However, you can set the argument drop = TRUE inside the indexing brackets to coerce the
output into a vector.

1 skulls[1:5, 3, drop = TRUE]

2 mean(skulls[1:5, 3, drop = TRUE])

[1] 1410 1445 1440 1340 1460

[1] 1419

113 Tibbles vs. Data Frames

Should the need arise, switching between tibbles and data frames is a simple matter. For
example, to convert our tibble skulls to a data frame, we can simply use the as.data.frame()

function in R.

1 # tibble to data frame

2 skulls <- as.data.frame(skulls)

3 skulls

sex predynastic c4800BC c4200BC c4000BC c3700BC c3500BC c2780BC

1 Male 1370 1410 1320 1445 NA 1395 1425

2 Male 1250 1445 1565 1540 NA 1420 1505

3 Male 1430 1440 1600 1565 NA 1380 1360

4 Male 1350 1340 1460 1710 NA 1260 1385

5 Male 1130 1460 1520 1690 NA 1285 1350

6 Male 1670 1290 1440 1775 NA 1505 1440

7 Male 1195 1290 1740 1390 NA 1230 1400

8 Male 1500 1385 1410 1620 NA 1250 1255

9 Male 1325 1290 1510 1500 NA 1315 1450

10 Male 1480 1565 1550 1255 NA 1360 1310

...

To convert it back to a tibble:

1 # data frame to tibble

2 skulls <- as_tibble(skulls)

3 skulls

A tibble: 343 × 11

sex predynastic c4800BC c4200BC c4000BC c3700BC c3500BC c2780BC

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Male 1370 1410 1320 1445 NA 1395 1425

2 Male 1250 1445 1565 1540 NA 1420 1505

3 Male 1430 1440 1600 1565 NA 1380 1360

4 Male 1350 1340 1460 1710 NA 1260 1385

5 Male 1130 1460 1520 1690 NA 1285 1350

6 Male 1670 1290 1440 1775 NA 1505 1440

7 Male 1195 1290 1740 1390 NA 1230 1400

8 Male 1500 1385 1410 1620 NA 1250 1255

9 Male 1325 1290 1510 1500 NA 1315 1450

10 Male 1480 1565 1550 1255 NA 1360 1310

i 333 more rows

i 3 more variables: c1590BC <dbl>, c378BC <dbl>, c331BC <dbl>

i Use `print(n = ...)` to see more rows

3. The Invocation and Metamorphosis of Data 114

3.6.1 Displaying Tibbles in the Console

Tibble Dimensions

Given the limited screen space and the large size of most datasets, tibbles are designed to display
only the first 10 rows when printed to the console, making it easier for users to work with their
data.

Generally, if you want to view an entire data set, the best practice is not to display it in the
console but rather use R’s View() function which opens it in a spreadsheet-style window. That
being said, many people will still find the number of rows displayed by a tibble within the console
lacking, particularly if you are working on anything other than a small laptop. For this reason,
the 10 row limit is a behaviour which can be circumvented in various ways. One simple way is to
make use of the print() function. For instance, if we want to display the first 20 rows we can
simply run ...

1 print(skulls, n = 20)

An alternative method is to change R’s default display behaviour by setting the minimum
number of rows to output using the options() function.

1 options(pillar.print_min = 20)

2 skulls

If that method is your preference, then it is usually advisable to place the options() code at
the top of your R script because it only needs to be run once.5

What if you wanted to display every single row each time you print a tibble? Well, recall
that R represents infinity in the positive direction as (Inf). We can use that to our advantage
here:

1 options(pillar.print_min = Inf)

2 skulls

What about columns though? Well, interestingly tibbles will actually conform to the size of
your console screen. So if you can only fit five columns on screen, the tibble will only display those
five and notify you of the others not displayed beneath the output. This is done to preserve the
“rectangleness” of the data so it can be visualized appropriately. This also stands in stark contrast
to how base R’s data frames behave, which will stack columns on top of each other, seemingly
with no consideration of column or row space. Admittedly, its nice to have all that information
displayed, but it comes at the cost of being difficult for a human to visually parse. That being

5If you are wondering why we specify pillar... to set rows, it’s because pillar is a package in the tidyverse.

115 Tibbles vs. Data Frames

said, if you wanted your tibbles to behave like this and always display all columns, you can just
add an additional argument, pillar.width = Inf , to the options() function:

1 options(

2 pillar.print_min = 20,

3 pillar.width = Inf

4)

5

6 skulls

However, if you prefer a more temporary solution, you can just add a width argument to the
print() function. E.g.,

1 print(skulls, n = 20, width = Inf)

The Precision and Display of Decimals in Tibbles

To save space and facilitate easier reading, both tibbles and data frames will round values with
many decimal values. Though, in the case of tibbles, they do not just simply round to a preset
number of digits. To illustrate what tibbles are doing in this respect, recall that R has a built-in
constant for π.

1 pi

[1] 3.141593

Using that, we will create a simple tibble that repeats π four times within a single column.

1 pi_df <- tibble(pie = rep(pi, 4))

2 pi_df

A tibble: 10 × 1

pie

<dbl>

1 3.14

2 3.14

3 3.14

4 3.14

One thing that will be noticed is that the tibble is only displaying π to two decimal places.
However, all of the digits still exist in R’s memory and any calculations you do will take those
unseen digits into account. For instance, if we isolate the first row’s value you can see that all the
digits of π are displayed.

3. The Invocation and Metamorphosis of Data 116

1 print(pi_df$pie[1], digits = 16)

[1] 3.141592653589793

It is important to understand that tibbles do not limit the actual numeric precision of your data.
Rather, they format numbers using significant figures (also known as significant digits) when
printing to the console. This helps maintain the clean, rectangular structure of the tibble output,
making columns easier to scan.

The way tibbles work with significant figures is slightly different than you may have learned
in primary school math class. Everything in front of the decimal point is always displayed, but
each number in front of that decimal point uses up a significant figure (a.k.a. a “sig fig” or “sig
dig”). For instance, if you had a number like 666.13. Displaying that to two sig figs would give
you 666. Displayed to three sig figs would again be 666. Displayed to four sig figs would be 666.1.
Five sig digs would be 666.13. Six sig figs would be 666.130. Seven would be 666.1300, and so
on.6

To increase the number of sig figs shown within a tibble we can simply add another argument
to the options() function:

1 options(pillar.sigfig = 16)

2 pi_df

A tibble: 10 × 1

pie

<dbl>

1 3.141592653589793e0

2 3.141592653589793e0

3 3.141592653589793e0

4 3.141592653589793e0

Because of limitations of 64-bit computing, a tibble is not going let you exceed 16 sig figs and in
certain cases will display results in scientific notation. In this case we see some scientific notation,
but it is to the power of 0, so it can be ignored.

6Note that in conventional mathematics, displaying 666.13 to two sig figs would be 670. The first two significant
digits are 6 and 6, but the third digit (6) causes rounding up.

117 Wide Data vs. Tidy Data

3.7 Wide Data vs. Tidy Data

3.7.1 Wide Data

Examining the skull_cap_partial_wide.csv file loaded at the beginning of this chapter, we
see that the data is structured logically. The first column represents the presumed sex (male or
female) of the skulls in each row, as recorded by Thomson and Randall-MacIver (1905). The
remaining columns represent skull measurements from a specific period in Egypt’s history. Note
that the output below displays only the first 8 of 11 columns, and the number of columns visible
in your output may vary depending on your screen size.

1 skulls

A tibble: 343 × 11

sex predynastic c4800BC c4200BC c4000BC c3700BC c3500BC c2780BC

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Male 1370 1410 1320 1445 NA 1395 1425

2 Male 1250 1445 1565 1540 NA 1420 1505

3 Male 1430 1440 1600 1565 NA 1380 1360

4 Male 1350 1340 1460 1710 NA 1260 1385

5 Male 1130 1460 1520 1690 NA 1285 1350

6 Male 1670 1290 1440 1775 NA 1505 1440

7 Male 1195 1290 1740 1390 NA 1230 1400

8 Male 1500 1385 1410 1620 NA 1250 1255

9 Male 1325 1290 1510 1500 NA 1315 1450

10 Male 1480 1565 1550 1255 NA 1360 1310

i 333 more rows

i 3 more variables: c1590BC <dbl>, c378BC <dbl>, c331BC <dbl>

i Use `print(n = ...)` to see more rows

This style of layout makes it easy to do certain things with the data. For instance, if we
wanted to know the mean breadth of skulls circa 4800 BCE, we could just run

1 mean(skulls$c4800BC, na.rm = TRUE)

[1] 1348.831

If we wanted to calculate the mean of each column, we can use the apply() function. This
function literally applies a function of your choosing to either the columns or rows. For example,
we might use apply() to compute the mean of each column. However, the first column ($sex)
contains character (chr) values which we cannot take the mean of. Trying to do so will generate
an error, so we need to exclude such columns before performing our calculations. We can use what
we learned about indexing in chapter 1 to ignore that first column (see section 1.4.10).

3. The Invocation and Metamorphosis of Data 118

1 apply(skulls[, 2:11], MARGIN = 2, FUN = mean, na.rm = TRUE)

predynastic c4800BC c4200BC c4000BC c3700BC c3500BC

1320.142 1348.831 1434.375 1494.700 1356.429 1336.663

c2780BC c1590BC c378BC c331BC

1308.454 1347.488 1285.781 1318.642

The argument FUN specifies what function is applied. The argument MARGIN specifies whether
that function is applied to the rows (1) or columns (2). In this case we are applying it to columns,
so we specified MARGIN = 2 . na.rm is of course an argument belonging to the mean() function,
which we need to specify so R knows how to handle the NA values in the data.

As another example of apply() , suppose you wanted to know the maximum value contained
in each row, ignoring the first column, you could apply the function max() to the rows. Since
our data has 343 rows, we will produce a vector of 343 elements, of which only the first 130 are
shown below.

1 apply(skulls[, 2:11], MARGIN = 1, FUN = max, na.rm = TRUE)

[1] 1450 1565 1600 1710 1690 1775 1740 1620 1585 1565 1600 1560 1590

[14] 1575 1630 1670 1570 1510 1525 1475 1610 1460 1475 1570 1485 1560

[27] 1570 1570 1510 1540 1495 1520 1640 1600 1515 1590 1450 1740 1515

[40] 1520 1525 1510 1490 1475 1560 1505 1630 1535 1530 1600 1510 1550

[53] 1560 1590 1480 1570 1615 1510 1610 1430 1585 1610 1660 1470 1570

[66] 1665 1440 1520 1560 1460 1485 1385 1530 1485 1470 1510 1430 1420

[79] 1610 1610 1560 1580 1500 1465 1440 1595 1425 1485 1575 1595 1550

[92] 1720 1535 1370 1400 1345 1630 1340 1400 1420 1455 1380 1530 1480

[105] 1360 1500 1615 1465 1400 1500 1475 1560 1550 1400 1610 1360 1630

[118] 1760 1325 1400 1510 1640 1635 1620 1435 1305 1490 1545 1465 1540

...

The structure of this dataset is what is commonly referred to as the wide format. At
first glance, R makes it fairly easy to work with data in this format. However, we have not
attempted anything particularly complex yet and, apart from the first column, all the columns
are conveniently numeric. Even though this layout might seem intuitive, it is not ideal for many
types of analysis or visualization. In fact, the original dataset7 had to be substantially truncated
to fit into a usable wide format for our purposes here.

7Full data set: https://github.com/statistical-grimoire/thomson-randallmaciver-1905/blob/main/Thomson_
Randall-MacIver_1905.csv

https://github.com/statistical-grimoire/thomson-randallmaciver-1905/blob/main/Thomson_Randall-MacIver_1905.csv
https://github.com/statistical-grimoire/thomson-randallmaciver-1905/blob/main/Thomson_Randall-MacIver_1905.csv

119 Wide Data vs. Tidy Data

3.7.2 Tidy data

Despite its shortcomings, use of the wide format is fairly common and gets its name from the
fact that it spreads variables across multiple columns. In this case, we can treat of the different
historical periods of the skulls (predynastic, c4800BC, c4200BC, c4000BC, etc.) as a single variable
in its own right. We might call this variable simply “period.” That is to say, c4800BC represents
a period in Egypt’s history, c4200BC represents a period in Egypt’s history, c4000BC represents
a period in Egypt’s history, and so on. Adjunct to this is a second variable, which we could refer
to as the “cranial capacity” of the skulls. This variable consists of the literal measurements 1370,
1250, 1430, and so on. And of course “sex” is a variable in this data as well; however, it is not
spread across multiple columns the way period and cranial capacity are.

When organizing or arranging data, best practices dictate that you restrict a single vari-
able to a single column. In this case, the variable period is being spread across ten columns.
And the variable cranial capacity is found within each of those ten columns. To fix this, we can
use the tidyverse function pivot_longer() .

1 skulls_tidy <- pivot_longer(skulls,

2 cols = predynastic : c331BC,

3 names_to = "period",

4 values_to = "capacity"

5)

6 skulls_tidy

A tibble: 3,430 × 3

sex period capacity

<chr> <chr> <dbl>

1 Male predynastic 1370

2 Male c4800BC 1410

3 Male c4200BC 1320

4 Male c4000BC 1445

5 Male c3700BC NA

6 Male c3500BC 1395

7 Male c2780BC 1425

8 Male c1590BC 1440

9 Male c378BC 1310

10 Male c331BC 1450

i 3,420 more rows

i Use `print(n = ...)` to see more rows

Notice a few differences with this pivoted data. There are now considerably more rows in
the data, 3,430 vs. 343, and there are two new columns, $period and $capacity which have
replaced the ten different time period columns. In terms of the pivot_longer() function we
used, the most important argument we specified is cols , as this defines which columns are going

3. The Invocation and Metamorphosis of Data 120

to be collapsed into a single column. The arguments names_to and values_to just specify the
name of the new columns and are not strictly required, but are good practice to include.

In the above code, we used : to specify a range of columns (from predynastic to c331BC),
but we could have instead provided a vector of column names, as shown below:

1 cols <- c(

2 predynastic, c4800BC, c4200BC, c4000BC, c3700BC,

3 c3500BC, c2780BC, c1590BC, c378BC, c331BC

4)

It is worth noting that the tidyverse has numerous methods for selecting multiple columns simul-
taneously that do not exist as part of base R. For a rundown of each see the R documentation:
?tidyr_tidy_select . Additionally, if you are operating outside of the tidyverse, analogous base
R functions will usually require column names to be entered as character strings; though, tidyverse
functions are typically indifferent to this practice. E.g.,

1 cols <- c(

2 "predynastic", "c4800BC", "c4200BC", "c4000BC", "c3700BC",

3 "c3500BC", "c2780BC", "c1590BC", "c378BC", "c331BC"

4)

By collapsing the 10 period columns into one, the data has now ascended into a sacred
arrangement known as tidy data (or, as some heretics call it, “the long format”). Tidy data is a
cornerstone of the tidyverse’s thaumaturgy and all tidy data adheres to three basic precepts:

I. Each variable is a column; each column is a variable.

II. Each observation is a row; each row is an observation.

III. Each value is a cell; each cell is a single value.

It can be seen that the skull data now satisfies these three standards, as did the msleep data
used in chapter 2. As we progress through the remainder of this chapter, it will become apparent
that having your data in this tidy form will greatly facilitate both plotting and analysis.

Interestingly, because of the restriction that data frames and tibbles have whereby each
column needs to contain the same amount of elements, the wide data necessarily had to make
use of NA values. The pivoting that was done to transform the data from wide to tidy preserved
those NA values, but now there is no need for them to keep them in the data (because they just
represent a non-existent value). As an example, consider row five:

121 Laying Pipe (The |> and %>% Operators)

1 skulls_tidy[5,]

A tibble: 1 × 3

sex period capacity

<chr> <chr> <dbl>

1 Male c3700BC NA

Without a value for $capacity , this row conveys no meaningful information. As such, it—and
any rows like it—can be safely removed from the dataset.

1 skulls_tidy <- drop_na(skulls_tidy, capacity)

2 skulls_tidy

A tibble: 1,449 × 3

sex period capacity

<chr> <chr> <dbl>

1 Male predynastic 1370

2 Male c4800BC 1410

3 Male c4200BC 1320

4 Male c4000BC 1445

5 Male c3500BC 1395

6 Male c2780BC 1425

7 Male c1590BC 1440

8 Male c378BC 1310

9 Male c331BC 1450

10 Male predynastic 1250

i 1,439 more rows

i Use `print(n = ...)` to see more rows

The function drop_na() simply removes (i.e., “drops”) any rows that have a NA value in the
columns you specify. Numerous methods exist for removing NA values, this is merely one means
by which to do that that remains true to the tidyverse’s cannon of spell casting.

3.8 Laying Pipe (The |> and %>%Operators)

One of the most significant contributions of the tidyverse to R has been its seamless implementation
of what is known as ‘piping’ syntax, which allows for an almost otherworldly level of efficiency.
However, this is not to say that piping was a concept invented entirely by the tidyverse. Rather, the
tidyverse’s consistent and innovative use of it brought its potential to light, leading to widespread
adoption within the R community. The best evidence of this influence is the integration of piping
into base R as of version 4.1.0, released in 2021.8 But, for the uninitiated, what exactly is ‘piping’?

8Although I have no direct evidence that the tidyverse directly motivated the addition of the pipe operator to
base R, it seems unlikely to be a coincidence given the ubiquity of %>% and the popularity of the dplyr package.

https://stat.ethz.ch/pipermail/r-announce/2021/000670.html

3. The Invocation and Metamorphosis of Data 122

The essence of piping is that you are transferring the output of one thing to another. For
instance, suppose we wanted to know the mean cranial capacity across all periods of skulls. We
could of course insert the $capacity column into the mean function like so ...

1 mean(skulls_tidy$capacity)

[1] 1335.255

Alternatively, we could “pipe” (i.e., transfer) the $capacity column in our tidy data to
the mean() function using R’s pipe operator |>

1 skulls_tidy$capacity |> mean()

[1] 1335.255

We could then send that output to something like the round() function.

1 skulls_tidy$capacity |>

2 mean() |>

3 round(1)

[1] 1335.3

As another example, suppose we wanted a tidy data frame that only contained skulls from
the predynastic period. The standard methodology would be to specify the data frame within the
filter() function, like so ...

1 filter(skulls_tidy, period == "predynastic")

A tibble: 318 × 3

sex period capacity

<chr> <chr> <dbl>

1 Male predynastic 1370

2 Male predynastic 1250

3 Male predynastic 1430

4 Male predynastic 1350

5 Male predynastic 1130

6 Male predynastic 1670

7 Male predynastic 1195

8 Male predynastic 1500

9 Male predynastic 1325

10 Male predynastic 1480

i 308 more rows

i Use `print(n = ...)` to see more rows

Alternatively, we could pipe the data into the filter() function to achieve the exact same
result.

123 Laying Pipe (The |> and %>% Operators)

1 skulls_tidy |> filter(period == "predynastic")

In addition to this, suppose you did not want the $sex column inside the output. To
achieve this, this output could be further piped into the tidyverse’s select() function which
allows you to grab specific columns.9

1 skulls_tidy |>

2 filter(period == "predynastic") |>

3 select(period, capacity)

A tibble: 318 × 2

period capacity

<chr> <dbl>

1 predynastic 1370

2 predynastic 1250

3 predynastic 1430

4 predynastic 1350

5 predynastic 1130

6 predynastic 1670

7 predynastic 1195

8 predynastic 1500

9 predynastic 1325

10 predynastic 1480

i 308 more rows

i Use `print(n = ...)` to see more rows

Now that the logic of piping is clear, it is worth reiterating that the |> operator is a
relatively new arrival in base R. Prior to its introduction in R version 4.1.0, the convention would
be to use the tidyverse’s pipe operator %>% instead. This comes from a package called magrittr
which contains a variety of pipes for different purposes, but the most significant of these is %>% .
This was, and to a certain extent still is, the de facto pipe used by the R community at large.
However, the recommended wisdom now (by the keepers of the tidyverse) is to use base R’s pipe
and not magrittr’s. That being said, many are unaware of this update to base R and much of
the help documentation on websites like stack overflow still use magrittr’s %>% . In terms of
functionality, there is little meaningful difference between |> and %>% and all of the above code
could have been written using %>% .

The above examples nicely show how the pipe operator works, but we should consider a
more realistic use case to illustrate its versatility.

9Note that we could obtain the same result by excluding the sex column in the function. i.e., select(-c(sex))

https://stat.ethz.ch/pipermail/r-announce/2021/000670.html
https://stackoverflow.com/

3. The Invocation and Metamorphosis of Data 124

3.8.1 Data Manipulation Example

Summarising the Data

The skull_cap_partial_wide.csv data we loaded earlier was of course in the wide format
originally, which is rarely needed. So what we could have done instead is loaded that data in
to R using read_csv , pipe it to the pivot_longer() function, and then pipe that into the
drop_na() function.

1 skulls <- read_csv("skull_cap_partial_wide.csv") |>

2 pivot_longer(

3 cols = predynastic:c331BC,

4 names_to = "period",

5 values_to = "capacity"

6) |>

7 drop_na(capacity)

8

9 skulls

A tibble: 1,449 × 3

sex period capacity

<chr> <chr> <dbl>

1 Male predynastic 1370

2 Male c4800BC 1410

3 Male c4200BC 1320

4 Male c4000BC 1445

5 Male c3500BC 1395

6 Male c2780BC 1425

7 Male c1590BC 1440

8 Male c378BC 1310

9 Male c331BC 1450

10 Male predynastic 1250

i 1,439 more rows

i Use `print(n = ...)` to see more rows

It is worth emphasizing the utility of the pipe operator here: It allowed us to get our data
into the form we wanted without creating and calling multiple different objects in memory. Only
one object was created, skulls . Moreover, the “arrow-like” notation of the pipe |> nicely shows
the workflow, i.e., logic, of our code.

Now suppose we wanted to compute some summary statistics for this data set. For instance,
maybe we want to know the mean cranial capacity of each period. This is where the tidyverse’s
functions group_by() and summarise() become extremely useful. Both of these functions, as
well as the filter() and select() functions we have been using, come from a very influential
tidyverse package called dplyr.

125 Laying Pipe (The |> and %>% Operators)

Box 3.1: Why is it called dplyr?

Generally, the names of R packages are relatively intuitive or are based on an initialism of some

kind. The dplyr package is an exception to that. The package's strange name is a reference to

both pliers (the tool) and a family of functions based around the apply() function that we

briefly used in section 3.7.1. The “d” refers to data frames. i.e., it is as if you are taking a pair of

pliers to data frames.

A commongo-to strategy of programmers generally is to use for-loops to domuch of the

computational grunt work. For-loops just repeatedly execute a set of code until some condition

has been satisfied. While for-loops can be used in R, its users often prefer to take a different,

more efficient, “vectorized” approach. The goal is to use what are called functionals. These

are functions that accept another function as an input and produce a vector as output. That is

precisely what the apply() function and its relatives like lapply , sapply , vapply do.

R is incredibly adept at working with vectors, matrices, and arrays, and dplyr's functions are all

based around a strategy of using functionals for data manipulation.

We will begin with the summarise() function which is used to create a data frame of
summarised information based on columns/variables in your data.

1 skulls |>

2 summarise(m = mean(capacity))

A tibble: 1 × 1

m

<dbl>

1 1335.

The code we have written is telling the summarise() function to apply the mean() func-
tion to the $capacity column. When it did this, it also created a new data frame10 and stored
that calculation as a column called $m (though, we could have named the column whatever we
wanted).

At present, none of this may seem terribly useful; however, we can make it more useful by
including the group_by() function which will tell R to literally “group by” categories found in
a different column or set of columns. Specifically, we can tell it to group by $period and then
summarise the data.

10Yes, yes—I know, technically what we created was a tibble. But that’s only because skulls was already a tibble
to begin with. For the sake of sanity (mine and yours), I’ll be treating tibbles and data frames as interchangeable
for the rest of this book. Purists, feel free to clutch your pearls.

3. The Invocation and Metamorphosis of Data 126

1 skulls |>

2 group_by(period) |>

3 summarise(m = mean(capacity))

A tibble: 10 × 2

period m

<chr> <dbl>

1 c1590BC 1347.

2 c2780BC 1308.

3 c331BC 1319.

4 c3500BC 1337.

5 c3700BC 1356.

6 c378BC 1286.

7 c4000BC 1495.

8 c4200BC 1434.

9 c4800BC 1349.

10 predynastic 1320.

We can now see the mean of each period in the data set and if we wanted, we could cre-
ate another column, $n , showing how many skulls there are in each period total by using the
length() function to count the skulls.

1 skulls |>

2 group_by(period) |>

3 summarise(

4 m = mean(capacity),

5 n = length(capacity)

6)

A tibble: 10 × 3

period m n

<chr> <dbl> <int>

1 c1590BC 1347. 203

2 c2780BC 1308. 152

3 c331BC 1319. 232

4 c3500BC 1337. 315

5 c3700BC 1356. 7

6 c378BC 1286. 32

7 c4000BC 1495. 50

8 c4200BC 1434. 16

9 c4800BC 1349. 124

10 predynastic 1320. 318

If we wanted to add in a column, $N , that represented the total amount of skulls across all
the periods we could count the number of rows in $skulls ...

127 Laying Pipe (The |> and %>% Operators)

1 nrow(skulls)

[1] 1449

... and include that in the summarise() function.

1 skulls |>

2 group_by(period) |>

3 summarise(

4 m = mean(capacity),

5 n = length(capacity),

6 N = nrow(skulls)

7)

A tibble: 10 × 4

period m n N

<chr> <dbl> <int> <int>

1 c1590BC 1347. 203 1449

2 c2780BC 1308. 152 1449

3 c331BC 1319. 232 1449

4 c3500BC 1337. 315 1449

5 c3700BC 1356. 7 1449

6 c378BC 1286. 32 1449

7 c4000BC 1495. 50 1449

8 c4200BC 1434. 16 1449

9 c4800BC 1349. 124 1449

10 predynastic 1320. 318 1449

Mathematical operations can also be applied to columns created within the summarise()

function. For instance, historical sources suggest that the ancient Egyptians used a volumetric unit
known as the “heqat,” primarily for measuring grain, with an estimated value of approximately
4.8 litres (Clagett, 1989). This allows us to convert skull capacities from cubic centimetres to
heqats through a simple division. Since 1 litre = 1,000 cm3, it follows that 1 heqat ≈ 4,800 cm3.
Thus if we wanted the mean and median cranial capacity in heqats we simply run ...

1 skulls |>

2 group_by(period) |>

3 summarise(

4 m = mean(capacity),

5 n = length(capacity),

6 N = nrow(skulls),

7 m_heq = m / 4800,

8 med_heq = median(capacity) / 4800

9)

3. The Invocation and Metamorphosis of Data 128

A tibble: 10 × 6

period m n N m_heq med_heq

<chr> <dbl> <int> <int> <dbl> <dbl>

1 c1590BC 1347. 203 1449 0.281 0.280

2 c2780BC 1308. 152 1449 0.273 0.270

3 c331BC 1319. 232 1449 0.275 0.275

4 c3500BC 1337. 315 1449 0.278 0.277

5 c3700BC 1356. 7 1449 0.283 0.284

6 c378BC 1286. 32 1449 0.268 0.266

7 c4000BC 1495. 50 1449 0.311 0.311

8 c4200BC 1434. 16 1449 0.299 0.306

9 c4800BC 1349. 124 1449 0.281 0.283

10 predynastic 1320. 318 1449 0.275 0.273

Notice that in the expression m_heq = m / 4800 , we were able to reuse the previously defined
variable m within the same summarise() function. This is one of the more especially convenient
aspects of this piping approach.

To finish up, lets include the maximum and minimum capacities found in each period. We
will also store this as an tibble called skull_summary .

1 skull_summary <- skulls |>

2 group_by(period) |>

3 summarise(

4 m = mean(capacity),

5 n = length(capacity),

6 N = nrow(skulls),

7 m_heq = m / 4800,

8 med_heq = median(capacity) / 4800,

9 min = min(capacity),

10 max = max(capacity)

11)

12 skull_summary

129 Laying Pipe (The |> and %>% Operators)

A tibble: 10 × 8

period m n N m_heq med_heq min max

<chr> <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl>

1 c1590BC 1347. 203 1449 0.281 0.280 1080 1665

2 c2780BC 1308. 152 1449 0.273 0.270 1030 1660

3 c331BC 1319. 232 1449 0.275 0.275 1000 1570

4 c3500BC 1337. 315 1449 0.278 0.277 965 1760

5 c3700BC 1356. 7 1449 0.283 0.284 1245 1450

6 c378BC 1286. 32 1449 0.268 0.266 1095 1550

7 c4000BC 1495. 50 1449 0.311 0.311 1235 1775

8 c4200BC 1434. 16 1449 0.299 0.306 1110 1740

9 c4800BC 1349. 124 1449 0.281 0.283 1110 1640

10 predynastic 1320. 318 1449 0.275 0.273 1050 1710

Plotting the Summarised Data

Now that we have neatly organized these summary statistics inside a tibble, we can visualize them.
Since the $period column contains ten discrete categories, a bar plot is a basic natural choice
for representing these data, so that is what we will create.

The basic logic of plotting has been discussed at length in chapter 2, and this discussion
will follow from that.11 The first step will be to give ggplot2 the data and tell it which columns
to map to the x and y axis respectively. Then we will add the geom_bar() function to this. In
this case, we are going to display the mean (i.e., column $m) on the y-axis because that is a fairly
standard practice many people will be familiar with. Though, it is worth remembering that any
of the other numeric (<dbl>) columns could be used as well.

1 ggplot(skull_summary, aes(x = period, y = m)) +

2 geom_bar(stat = "identity") +

3 labs(x = "Period", y = "Cranial Capacity (cm³)")

11In other words, if you haven’t read chapter 2, go back and do that.

3. The Invocation and Metamorphosis of Data 130

0

500

1000

1500

c1590BC c2780BC c331BC c3500BC c3700BC c378BC c4000BC c4200BC c4800BC predynastic
Period

C
ra

ni
al

 C
ap

ac
ity

 (
cm

³)

The argument stat = "identity" is simply telling ggplot2 to use the values within the
skull_summary tibble to create the bars. We needed to specify this because ggplot2 has the
ability to take the raw data directly (e.g., skulls) and perform its own summary calculations.
However, we do not need it to do that in this particular case, hence why we included this argument.

At the moment, going from left to right, the time periods confusingly appear in a non-
chronological order. So how do we fix that? This is where the concept of factors becomes essential.

3.9 Factors

In statistics, we often refer to a categorical variable as a factor. Factors consist of different levels,
which correspond to the unique categories that variable can take.

For example, in our tidy data, the variable $period can be considered a factor. Each
distinct time period in that column—such as predynastic , c4800BC , c4200BC , c4000BC ,
and so on—represents a different level of the factor. That is, the factor named $period has
multiple levels, one for each unique period label.

To summarize: in tidy data, you can think of a “factor” as essentially a categorical variable
(or column), and a “level” as one of its possible categories. Just beware that this terminology is
specific to tidy data layouts.12

12While “factors” have a more technical definition in statistics—particularly in the context of experimental design
and modelling—this simplified description is sufficient for our current purposes.

131 Factors

• Factor = column
• Level = category within a column

If we examine skulls :

1 skulls

A tibble: 1,449 × 3

sex period capacity

<chr> <chr> <dbl>

1 Male predynastic 1370

2 Male c4800BC 1410

3 Male c4200BC 1320

4 Male c4000BC 1445

5 Male c3500BC 1395

6 Male c2780BC 1425

7 Male c1590BC 1440

8 Male c378BC 1310

9 Male c331BC 1450

10 Male predynastic 1250

i 1,439 more rows

i Use `print(n = ...)` to see more rows

You can see that the output is telling us that the $period column is a character vector (notice
the <chr>). In other words, R does not know that predynastic , c4800BC , c4200BC , etc.
are categories. It just sees 1,449 individual character values in that particular column. For the
purpose of plotting and analyses, it is important that R understands that these are levels of a
factor (i.e., it is important that it treats these as categories). We can easily tell R that a particular
column is a factor using the function factor() .13

1 skulls$period <- factor(skulls$period)

2 skulls

A tibble: 1,449 × 3

sex period capacity

<chr> <fct> <dbl>

1 Male predynastic 1370

2 Male c4800BC 1410

3 Male c4200BC 1320

4 Male c4000BC 1445

5 Male c3500BC 1395

6 Male c2780BC 1425

7 Male c1590BC 1440

13Technically, when we use this function we are replacing an existing column with a new column that happens
to be a class of object called a factor. We are not really “telling” R it is a factor, we are “creating” a factor - but
that’s just a nitpicky semantic issue.

3. The Invocation and Metamorphosis of Data 132

8 Male c378BC 1310

9 Male c331BC 1450

10 Male predynastic 1250

i 1,439 more rows

i Use `print(n = ...)` to see more rows

Notice that the $period column is now labelled as <fct> , which stands for “factor.” Addi-
tionally, if we isolate this column, the ten levels of the factor are displayed at the bottom of the
output.

1 skulls$period

...

10 Levels: c1590BC c2780BC c331BC c3500BC c3700BC ... predynastic

While this implicit listing is convenient, a better and more deliberate way to view the levels of a
factor is to use the levels() function.

1 levels(skulls$period)

[1] "c1590BC" "c2780BC" "c331BC" "c3500BC" "c3700BC"

[6] "c378BC" "c4000BC" "c4200BC" "c4800BC" "predynastic"

3.9.1 Ordering Levels

Discerning readers may have noticed that the order of the levels shown match the order of the
bars in the graph we created. This is not a coincidence. Whenever you use ggplot2 to plot or
dplyr to summarize categorical data, these packages quietly convert the relevant columns into
factors behind the scenes when necessary. By default, R arranges factor levels in alphabetical
order, which is why the bars appeared in that particular sequence. However, we can override
this default by explicitly specifying the order of the levels when we define the factor using the
factor() function. This allows us to arrange categories in a more meaningful way—such as
placing historical time periods in chronological order.

1 skulls$period <- factor(skulls$period,

2 levels = c(

3 "predynastic", "c4800BC", "c4200BC", "c4000BC", "c3700BC",

4 "c3500BC", "c2780BC", "c1590BC", "c378BC", "c331BC"

5)

6)

7 levels(skulls$period)

[1] "predynastic" "c4800BC" "c4200BC" "c4000BC" "c3700BC"

[6] "c3500BC" "c2780BC" "c1590BC" "c378BC" "c331BC"

It is important to emphasize that reordering the levels of a factor does not change the actual
order of the values in the data frame. The rows remain exactly as they were. What we are doing

133 Factors

instead is instructing R that, for the purposes of plotting or analysis, predynastic should be
treated as coming before c4800BC , which comes before c4200BC , and so on. If we now re-run
our earlier code to compute summary statistics, you will see that the $period column reflects
this new ordering and is listed as <fct> .

1 skull_summary <- skulls |>

2 group_by(period) |>

3 summarise(

4 m = mean(capacity),

5 n = length(capacity),

6 N = nrow(skulls),

7 m_heq = m / 4800,

8 med_heq = median(capacity) / 4800,

9 min = min(capacity),

10 max = max(capacity)

11)

12

13 skull_summary

A tibble: 10 × 8

period m n N m_heq med_heq min max

<fct> <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl>

1 predynas… 1320. 318 1449 0.275 0.273 1050 1710

2 c4800BC 1349. 124 1449 0.281 0.283 1110 1640

3 c4200BC 1434. 16 1449 0.299 0.306 1110 1740

4 c4000BC 1495. 50 1449 0.311 0.311 1235 1775

5 c3700BC 1356. 7 1449 0.283 0.284 1245 1450

6 c3500BC 1337. 315 1449 0.278 0.277 965 1760

7 c2780BC 1308. 152 1449 0.273 0.270 1030 1660

8 c1590BC 1347. 203 1449 0.281 0.280 1080 1665

9 c378BC 1286. 32 1449 0.268 0.266 1095 1550

10 c331BC 1319. 232 1449 0.275 0.275 1000 1570

Moreover, when we now plot the data, the bars will also have shifted their position accordingly.

1 ggplot(skull_summary, aes(x = period, y = m)) +

2 geom_bar(stat = "identity") +

3 labs(x = "Period", y = "Cranial Capacity (cm³)")

3. The Invocation and Metamorphosis of Data 134

0

500

1000

1500

predynastic c4800BC c4200BC c4000BC c3700BC c3500BC c2780BC c1590BC c378BC c331BC
Period

C
ra

ni
al

 C
ap

ac
ity

 (
cm

³)

3.9.2 Naming Levels

On occasion, it will be useful to rename the levels of a factor. For instance, previously we had
used the labels argument inside ggplot2’s scale_x_discrete() function to adjust the x-axis
labelling. However, an alternative strategy would have been to relabel the factor levels. We can
do this using the levels() function from earlier. And we have the option of renaming the levels
of the skulls or skull_summary data frames. We will do the latter so that we do not need to
re-run the code that produced skull_summary .

1 levels(skull_summary$period) <- c(

2 "Predynastic", "c.4800 BC", "c.4200 BC", "c.4000 BC", "c.3700 BC",

3 "c.3500 BC", "c.2780 BC", "c.1590 BC", "c.378 BC", "c.331 BC"

4)

5 skull_summary

A tibble: 10 × 8

period m n N m_heq med_heq min max

<fct> <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl>

1 Predynastic 1320. 318 1449 0.275 0.273 1050 1710

2 c.4800 BC 1349. 124 1449 0.281 0.283 1110 1640

3 c.4200 BC 1434. 16 1449 0.299 0.306 1110 1740

4 c.4000 BC 1495. 50 1449 0.311 0.311 1235 1775

5 c.3700 BC 1356. 7 1449 0.283 0.284 1245 1450

6 c.3500 BC 1337. 315 1449 0.278 0.277 965 1760

7 c.2780 BC 1308. 152 1449 0.273 0.270 1030 1660

8 c.1590 BC 1347. 203 1449 0.281 0.280 1080 1665

9 c.378 BC 1286. 32 1449 0.268 0.266 1095 1550

10 c.331 BC 1319. 232 1449 0.275 0.275 1000 1570

A corresponding change will be seen on the plot’s x-axis labels as well when that is generated.

135 Factors

1 ggplot(skull_summary, aes(x = period, y = m)) +

2 geom_bar(stat = "identity") +

3 labs(x = "Period", y = "Cranial Capacity (cm³)")

0

500

1000

1500

Predynastic c.4800 BC c.4200 BC c.4000 BC c.3700 BC c.3500 BC c.2780 BC c.1590 BC c.378 BC c.331 BC
Period

C
ra

ni
al

 C
ap

ac
ity

 (
cm

³)

It would be remiss not to mention that ggplot2 provides a dedicated method for updating
x-axis labels—one that doesn’t require modifying the factor levels directly. Specifically, you can
use the labels argument within the scale_x_discrete() function. This approach simply
involves supplying a character vector that specifies the new labels in their current plotting order,
like so…

1 ggplot(skull_summary, aes(x = period, y = m)) +

2 geom_bar(stat = "identity") +

3 labs(x = "Period", y = "Cranial Capacity (cm³)") +

4 scale_x_discrete(

5 labels = c(

6 "Predynastic", "c.4800 BC", "c.4200 BC", "c.4000 BC", "c.3700 BC",

7 "c.3500 BC", "c.2780 BC", "c.1590 BC", "c.378 BC", "c.331 BC"

8)

9)

Concerning the manipulation of factors, a brief word of warning is in order: do not confuse
the levels argument used inside the factor() function with the levels() function itself.
While they sound similar, they serve very different purposes.14

• levels = ... (argument inside factor()) is used to specify the order of factor levels.

• levels() (function) is used to rename existing factor levels.

14To further complicate things (because of course it does), the factor() function also includes a labels

argument that allows you to rename levels at the time of creation. See the R documentation for details: ?factor

3. The Invocation and Metamorphosis of Data 136

For beginners, factors can feel particularly troublesome. But they are foundational to R’s
thaumaturgy and cannot be avoided. So rather than resisting, it is best to embrace their evil,
arcane nature—otherwise you will never be at peace with yourself.

3.10 Adding Error Bars

Recall that in addition to the mean estimated cranial capacity for each period, skull_summary

also includes the smallest and largest measured capacities, stored in the $min and $max columns,
respectively.

1 skull_summary

A tibble: 10 × 8

period m n N m_heq med_heq min max

<fct> <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl>

1 Predynastic 1320. 318 1449 0.275 0.273 1050 1710

2 c.4800 BC 1349. 124 1449 0.281 0.283 1110 1640

3 c.4200 BC 1434. 16 1449 0.299 0.306 1110 1740

4 c.4000 BC 1495. 50 1449 0.311 0.311 1235 1775

5 c.3700 BC 1356. 7 1449 0.283 0.284 1245 1450

6 c.3500 BC 1337. 315 1449 0.278 0.277 965 1760

7 c.2780 BC 1308. 152 1449 0.273 0.270 1030 1660

8 c.1590 BC 1347. 203 1449 0.281 0.280 1080 1665

9 c.378 BC 1286. 32 1449 0.268 0.266 1095 1550

10 c.331 BC 1319. 232 1449 0.275 0.275 1000 1570

We can incorporate this information into our graph using error bars. Error bars provide a visual
representation of the data’s spread, and the difference between the maximum and minimum values
corresponds to a classic measure of spread known as the range.15 While the range is generally not
recommended as a primary measure of spread, it has the advantage of being intuitive and serves
our current illustrative purposes well enough.

To create error bars, we can simply use ggplot2’s geom_errorbar() function. We just need
to tell it which column corresponds to the bottom of the error bars, using the argument ymin ,
and which column corresponds to the top of the error bars, using the argument ymax .

1 ggplot(skull_summary, aes(x = period, y = m)) +

2 geom_bar(stat = "identity") +

3 geom_errorbar(aes(ymin = min, ymax = max), width = 0.25) +

4 labs(x = "Period", y = "Cranial Capacity (cm³)")

15If this concept isn’t entirely clear yet, don’t worry—spread, as a formal statistical idea, will be explored in
more detail in later chapters.

137 Bar Fill Colour

0

500

1000

1500

Predynastic c.4800 BC c.4200 BC c.4000 BC c.3700 BC c.3500 BC c.2780 BC c.1590 BC c.378 BC c.331 BC
Period

C
ra

ni
al

 C
ap

ac
ity

 (
cm

³)

3.11 Bar Fill Colour

To further enhance the bar plot’s visual appeal, we could adjust the fill colour of the bars to reflect
the corresponding time periods.

But we should pause for a moment because, strictly speaking, this is something we should
NOT do—unless we have a compelling reason. And in this case, we do not have a compelling
reason. The purpose of a plot like this is to compare the heights of the bars—that is, the y-axis
values. From a scientific standpoint, it’s best to ensure that each bar has equal visual weight, and
using a single consistent colour accomplishes exactly that. Since the categories are already labelled
on the x-axis, additional colours only serve as unnecessary distractions that might bias or obscure
the comparisons you are trying to see. For instance, something like this would be scientifically
acceptable:

1 ggplot(skull_summary, aes(x = period, y = m)) +

2 geom_bar(stat = "identity", colour = "black", fill = "#CBA135") +

3 geom_errorbar(aes(ymin = min, ymax = max), width = 0.25) +

4 labs(x = "Period", y = "Cranial Capacity (cm³)")

3. The Invocation and Metamorphosis of Data 138

0

500

1000

1500

Predynastic c.4800 BC c.4200 BC c.4000 BC c.3700 BC c.3500 BC c.2780 BC c.1590 BC c.378 BC c.331 BC
Period

C
ra

ni
al

 C
ap

ac
ity

 (
cm

³)

That said, if you’re collaborating on a project, your teammates may insist on rainbow-
coloured bars or other such nonsense regardless of this sound logic. And if they outnumber you,
they’ll win the vote—and possibly the fistfight. Science offers no defence against the tyranny of
“aesthetics.”

Setting aside everything we just said, if we do decide to adjust the colour of the bars, we
need to be mindful of how the x-axis is structured. Technically, the x-axis represents a discrete
scale—not a continuous one (see Section 2.9.1 for more on this distinction). However, while ggplot2
treats it as discrete (because it’s a bar plot), the underlying variable—ordered time periods—does
follow a natural continuum theoretically. So, in this case, using a continuous colour palette is not
entirely unjustified. To that end, we can make use of one of R’s many HCL palettes discussed in
Section 2.9.5. The “Green-Brown” palette, in particular, is a solid choice—it provides a smooth
gradation that maps well onto temporal data without being garish or overly distracting.16

Given that we have 10 separate categories of dates, we can define our palette in the following
way.17

1 egypt_pal <- hcl.colors(n = 10, palette = "Green-Brown")

16A visual guide to all HCL palettes is available in Appendix B.
17If you want to be a bit fancy—and make your code more robust—you can write something like

egypt_pal <- hcl.colors(length(levels(skulls$period)), palette = "Green-Brown") . This way, if you
ever remove levels, the number of colours will automatically adjust, and you won’t need to revise your code manually.

139 Bar Fill Colour

We can then use egypt_pal to adjust the fill colour of the bars in the plot.

1 ggplot(skull_summary, aes(x = period, y = m)) +

2 geom_bar(stat = "identity", colour = "black", aes(fill = period)) +

3 geom_errorbar(aes(ymin = min, ymax = max), width = 0.25) +

4 labs(x = "Period", y = "Cranial Capacity (cm³)") +

5 scale_fill_manual(values = egypt_pal)

0

500

1000

1500

Predynasticc.4800 BCc.4200 BCc.4000 BCc.3700 BCc.3500 BCc.2780 BCc.1590 BC c.378 BC c.331 BC
Period

C
ra

ni
al

 C
ap

ac
ity

 (
cm

³)

period

Predynastic

c.4800 BC

c.4200 BC

c.4000 BC

c.3700 BC

c.3500 BC

c.2780 BC

c.1590 BC

c.378 BC

c.331 BC

ggplot2 quite sagely adds a legend when you map fill colours to a variable; however, in this
particular case the legend is redundant with the information our x-axis provides and is thus taking
up space unnecessarily. To remove the legend, there are different methods that could be employed.
Since we only have the fill aesthetic mapped, it is easy enough to just add guide = "none" to
the scale_fill_manual() function.

1 ggplot(skull_summary, aes(x = period, y = m)) +

2 geom_bar(stat = "identity", colour = "black", aes(fill = period)) +

3 geom_errorbar(aes(ymin = min, ymax = max), width = 0.25) +

4 labs(x = "Period", y = "Cranial Capacity (cm³)") +

5 scale_fill_manual(values = egypt_pal, guide = "none")

3. The Invocation and Metamorphosis of Data 140

0

500

1000

1500

Predynastic c.4800 BC c.4200 BC c.4000 BC c.3700 BC c.3500 BC c.2780 BC c.1590 BC c.378 BC c.331 BC
Period

C
ra

ni
al

 C
ap

ac
ity

 (
cm

³)

3.12 Putting It All Together

To consolidate everything covered in this chapter, it’s helpful to revisit the analysis one final
time—but in a more realistic, streamlined, end-to-end format. Doing so not only reinforces how
the various components work together in a complete R script, but also provides an opportunity
to enhance the graph by incorporating some faceting18 based on the previously ignored variable
$sex .

1 # Load the tidyverse (and praise the our dear leader Hadley)

2 library(tidyverse)

1 # Load the data

2 skulls <- read_csv("skull_cap_partial_wide.csv") |>

3 # Pivot to the tidy format

4 pivot_longer(

5 cols = predynastic:c331BC,

6 names_to = "period",

7 values_to = "capacity"

8) |>

9 # Remove NAs

10 drop_na(capacity)

1 # Factor and order "period"

2 skulls$period <- factor(skulls$period,

3 levels = c(

4 "predynastic", "c4800BC", "c4200BC", "c4000BC", "c3700BC",

5 "c3500BC", "c2780BC", "c1590BC", "c378BC", "c331BC"

6)

7)

18Facets were covered in Chapter 2, section 2.6.

141 Putting It All Together

1 # Rename the factor levels

2 levels(skulls$period) <- c(

3 "Predynastic", "c.4800 BC", "c.4200 BC", "c.4000 BC", "c.3700 BC",

4 "c.3500 BC", "c.2780 BC", "c.1590 BC", "c.378 BC", "c.331 BC"

5)

1 # Calculate stats for plot, grouping by 'period' and 'sex'

2 skull_summary <- skulls |>

3 group_by(period, sex) |> # Note the addition of a second factor to group_by()

4 summarise(

5 m = mean(capacity),

6 min = min(capacity),

7 max = max(capacity)

8)

9

10 skull_summary # Output shows group-wise means and ranges, separated by sex

A tibble: 18 × 5

Groups: period [10]

period sex m min max

<fct> <chr> <dbl> <dbl> <dbl>

1 Predynastic Female 1262. 1050 1570

2 Predynastic Male 1391. 1130 1710

3 c.4800 BC Female 1280. 1110 1515

4 c.4800 BC Male 1430. 1195 1640

5 c.4200 BC Female 1271 1110 1530

6 c.4200 BC Male 1509. 1320 1740

7 c.4000 BC Male 1495. 1235 1775

8 c.3700 BC Female 1356. 1245 1450

9 c.3500 BC Female 1255. 965 1490

10 c.3500 BC Male 1408. 1160 1760

11 c.2780 BC Female 1252. 1030 1520

12 c.2780 BC Male 1384. 1160 1660

13 c.1590 BC Female 1288. 1080 1515

14 c.1590 BC Male 1421. 1210 1665

15 c.378 BC Female 1227. 1095 1400

16 c.378 BC Male 1345. 1190 1550

17 c.331 BC Female 1245 1000 1455

18 c.331 BC Male 1383. 1150 1570

1 # Store desired colours

2 egypt_pal <- hcl.colors(n = 10, palette = "Green-Brown")

3. The Invocation and Metamorphosis of Data 142

1 # Plot data

2 ggplot(skull_summary, aes(x = period, y = m)) +

3 geom_bar(

4 stat = "identity",

5 colour = "black",

6 aes(fill = period)

7) +

8 geom_errorbar(aes(ymin = min, ymax = max), width = 0.25) +

9 scale_fill_manual(values = egypt_pal, guide = "none") +

10 labs(

11 x = "Period",

12 y = "Cranial Capacity (cm³)"

13) +

14 facet_wrap(~ sex, ncol = 1) # Note the use of facet_wrap

Male

Female

Predynastic c.4800 BC c.4200 BC c.4000 BC c.3700 BC c.3500 BC c.2780 BC c.1590 BC c.378 BC c.331 BC

0

500

1000

1500

0

500

1000

1500

Period

C
ra

ni
al

 C
ap

ac
ity

 (
cm

³)

143 Putting It All Together

Finally, it is worth demonstrating just how easily—and dramatically—we can adjust ggplot2
to suit different analytical goals. As it currently stands, the plot is structured to compare cranial
capacity across time periods within each sex. However, with just two minor changes (see line 2 and
14), we can reorient the layout to instead compare the sexes within each time period. Specifically,
we place $sex on the x-axis and facet according to $period .

1 # Plot data

2 ggplot(skull_summary, aes(x = sex, y = m)) +

3 geom_bar(

4 stat = "identity",

5 colour = "black",

6 aes(fill = period)

7) +

8 geom_errorbar(aes(ymin = min, ymax = max), width = 0.25) +

9 scale_fill_manual(values = egypt_pal, guide = "none") +

10 labs(

11 x = "Sex",

12 y = "Cranial Capacity (cm³)"

13) +

14 facet_wrap(~ period, ncol = 5)

c.3500 BC c.2780 BC c.1590 BC c.378 BC c.331 BC

Predynastic c.4800 BC c.4200 BC c.4000 BC c.3700 BC

Female Male Female Male Female Male Female Male Female Male

0

500

1000

1500

0

500

1000

1500

Sex

C
ra

ni
al

 C
ap

ac
ity

 (
cm

³)

PART II

Descriptive Statistics - Seeing Without Asking

This part opens the gate to those ancient tools which allow us to extract form from the formless. We do

not yet ask questions of the gods; we simply take stock of the offering they have laid before us.

145

Chapter 4

Taxonomies of the Profane – Variables, Scales,

and Their Unholy Properties

T
HERE is a kind of grim devilry in the act of classification. The moment you catego-

rize a thing—whether it be a small volume of blood, the reaction time of a startle, or

the flickering presence of a belief—you strip it from the chaos of the unknown and

chain it down, trembling, to a scale. Statisticians call them variables, but do not be

fooled: these are not gentle creatures. They are twisted reflections of reality that

must be bound in measurement and tortured into obedience. Nominal. Ordinal. Interval. Ratio. These

are the sigils we etch into our grimoires of data, each one whispering what kind of rituals—summations,

correlations, regressions—we may dare perform. But beware: misuse the wrong scale, or confuse the na-

ture of your variable, and the results may turn on you, distorted and cursed. This chapter delves into the

infernal art of measurement, uncovering the hidden laws that govern how data can be named, ranked,

counted, or quantified. Prepare yourself—for to wield statistics is to practice a kind of taxonomy, yes ...

but one written in the ink of madness, precision, and utter cruelty.

4.1 A Practical Problem

Consider the complete craniometric dataset provided by Thomson and Randall-MacIver (1905),
available in the file Thomson_Randall-MacIver_1905.csv ,1 a “small” excerpt of which is dis-
played in Table 4.1. The file contains a wide range of craniometric measurements along with other
useful, and sometimes missing, contextual information, such as the estimated date range for each
skull, the ruling dynasty at the time, and the archaeological site of origin.

1The data file can be obtained at this book’s GitHub repository: https://github.com/statistical-grimoire/
thomson-randallmaciver-1905

147

https://github.com/statistical-grimoire/thomson-randallmaciver-1905
https://github.com/statistical-grimoire/thomson-randallmaciver-1905

4. Taxonomies of the Profane – Variables, Scales, and Their Unholy Properties 148

table start_date end_date start_era end_era dynasty location sex gol ool bbh mb biaurb bizygb bnl bal nah nh nw fai ga po cc

1 BC BC Early Predynastic Abydos Male 178.0 177 138.0 131 113 120.0 98 89 68.0 49 23.0 91.0 76.0 A 1370
1 BC BC Early Predynastic Abydos Male 179.0 179 131.0 125 111 121.0 97 92 67.0 48 23.0 95.0 73.0 B 1250
1 BC BC Early Predynastic Abydos Male 185.0 185 134.0 136 112 116.0 68.0 47 24.0 1430
1 BC BC Early Predynastic Abydos Male 183.0 180 132.0 131 112 122.0 103 99 64.0 50 26.0 96.0 74.5 C 1350
1 BC BC Early Predynastic Abydos Male 169.0 169 132.0 119 106 119.0 100 96 64.0 44 25.0 96.0 74.0 B C 1130

1 BC BC Early Predynastic Abydos Male 202.0 202 143.0 136 119 130.0 107 100 75.0 54 24.0 93.0 73.5 A 1670
1 BC BC Early Predynastic Abydos Male 185.0 185 114 68.0 47 23.0
1 BC BC Early Predynastic Abydos Male 175.0 175 128
1 BC BC Early Predynastic Abydos Male 190.0 190 146
1 BC BC Early Predynastic Abydos Male 188.0 188 127

1 BC BC Early Predynastic Abydos Male 177.0 177 122.0 130 1195
1 BC BC Early Predynastic Abydos Male 192.0 189 136
1 BC BC Early Predynastic Abydos Male 187.0 187 137.0 138 114 123.0 96 89 76.0 56 25.0 93.0 70.5 A 1500
1 BC BC Early Predynastic Abydos Male 176.0 174 134.0 132 100 98 86 65.0 88.0 79.5 - A 1325
1 BC BC Early Predynastic Abydos Male 192.0 192 130.0 139 115 125.0 103 108 72.0 48 28.0 105.0 66.0 E F 1480

1 BC BC Early Predynastic Abydos Male 187.0 187 132
1 BC BC Early Predynastic Abydos Male 187.0 185 136.0 125 105 119.0 101 93 66.0 48 25.0 92.0 76.0 A 1350
1 BC BC Early Predynastic Abydos Male 181.0 177 134.0 131 112 125.0 102 102 76.0 51 25.0 100.0 68.0 C 1350
1 BC BC Early Predynastic Abydos Male 194.0 191 134.0 134 127 109 99 72.0 51 26.0 91.0 77.5 A 1480
1 BC BC Early Predynastic Abydos Male 191.0 189 130

1 BC BC Early Predynastic EL Amrah Male 161.0 161 129
1 BC BC Early Predynastic EL Amrah Male 181.0 180 138.0 129 123.0 106 95 65.0 50 24.0 90.0 80.0 A 1370
1 BC BC Early Predynastic EL Amrah Male 188.0 188 138.0 135 113.0 67.0 47 26.0 1490
1 BC BC Early Predynastic EL Amrah Male 169.0 140
1 BC BC Early Predynastic EL Amrah Male 189.0 188 138

1 BC BC Early Predynastic EL Amrah Male 189.0 189 125
1 BC BC Early Predynastic EL Amrah Male 182.0 184 128
1 BC BC Early Predynastic EL Amrah Male 195.0 193
1 BC BC Early Predynastic EL Amrah Male 193.0 191 140.5 131 128.0 1495
1 BC BC Early Predynastic EL Amrah Male 190.0 188 125

1 BC BC Early Predynastic Hou Male 177.0 176 121.0 134 116 125.0 96 95 72.0 53 25.0 99.0 68.0 B C 1220
1 BC BC Early Predynastic Hou Male 189.0 188 129.0 126 111 126.0 105 109 68.0 51 26.0 104.0 68.0 F 1305
1 BC BC Early Predynastic Hou Male 190.0 188 142.0 133 114 106 107 64.0 101.0 71.0 E 1525
1 BC BC Early Predynastic Hou Male 180.0 179 136.0 132 121 129.0 102 100 66.0 50 27.0 98.0 72.0 C D 1375
1 BC BC Early Predynastic Hou Male 181.0 179 140.0 141 114 125.0 102 100 72.0 51 27.0 98.0 70.0 C 1520

1 BC BC Early Predynastic Hou Male 174.0 171 134.0 131 116 130.0 99 97 69.0 54 22.0 98.0 71.0 C 1300
1 BC BC Early Predynastic Hou Male 178.0 178 137.0 135 112 122.0 109 103 74.0 50 24.0 94.5 74.0 A B 1400
1 BC BC Early Predynastic Hou Male 176.0 173 133.0 132 112 126.0 98 93 72.0 53 26.0 95.0 71.5 A B 1315
1 BC BC Early Predynastic Hou Male 181.0 179 136.0 139 116 98 96 70.0 50 27.0 98.0 70.0 1460
1 BC BC Early Predynastic Hou Male 185.0 183 131.0 132 111 124.0 104 101 68.0 49 26.0 97.0 73.0 C 1360

1 BC BC Early Predynastic Hou Male 184.0 184 133.0 126 114 125.0 103 102 66.0 51 28.0 99.0 72.0 D 1310
2 BC BC Early Predynastic Hou Male 186.0 185 135.0 135 116 125.0 105 103 66.0 47 26.0 98.0 73.0 D 1440
2 BC BC Early Predynastic Hou Male 176.0 175 124.0 134 110 123.0 96 93 74.0 53 23.0 97.0 69.0 A B 1245
2 BC BC Early Predynastic Hou Male 187.0 186 134.0 128 110 103 67.0 50 27.0 94.0 77.0 B C 1360
2 BC BC Early Predynastic Hou Male 181.0 181 130.0 130 117 129.0 103 104 69.0 49 25.0 101.0 69.5 D E 1300

2 BC BC Early Predynastic Hou Male 185.0 182 135.0 138 121 136.0 104 100 78.0 55 27.0 96.0 70.0 A B 1470
2 BC BC Early Predynastic Hou Male 184.0 184 132.0 128 106 117.0 97 93 72.0 53 25.0 96.0 70.5 A B 1320
2 BC BC Early Predynastic Hou Male 184.0 184 129.0 127 116 131.0 102 106 63.0 48 28.0 104.0 68.5 F 1290
2 BC BC Early Predynastic Hou Male 185.0 183 136.0 131 117 129.0 111 114 73.0 54 27.0 103.0 68.5 E F 1400
2 BC BC Early Predynastic Hou Male 180.0 179 138.0 124 114 120.0 101 101 62.0 46 25.0 100.0 71.5 D E 1310

2 BC BC Early Predynastic Hou Male 181.0 180 139.0 131 113 121.0 98 92 71.0 53 24.0 94.0 73.0 A 1400
2 BC BC Early Predynastic Hou Male 183.0 182 138.0 131 111 126.0 102 98 73.0 49 24.0 96.0 71.0 B 1410
2 BC BC Early Predynastic Hou Male 183.0 180 140.0 137 127 133.0 103 103 74.0 52 22.0 100.0 69.0 C 1495
2 BC BC Early Predynastic Hou Male 184.0 180 125.0 128 112 121.0 98 95 64.0 44 24.0 97.0 72.5 C 1250
2 BC BC Late Predynastic El Amrah Male 185.0 185 138.0 124 115 122.0 102 101 67.0 48 26.0 99.0 71.0 D 1350

2 BC BC Late Predynastic El Amrah Male 178.0 176 138
2 BC BC Late Predynastic El Amrah Male 189.0 187 134.0 133 129.0 99 97 65.0 48 30.0 98.0 72.0 C D 1430
2 BC BC Late Predynastic El Amrah Male 183.0 182 142
2 BC BC Late Predynastic El Amrah Male 183.0 183 141
2 BC BC Late Predynastic El Amrah Male 194.0 194 134

2 BC BC Late Predynastic El Amrah Male 189.0 189 134.0 138 120.0 100 98 67.0 45 26.0 98.0 71.0 C 1490
2 BC BC Late Predynastic El Amrah Male 190.0 190 132
2 BC BC Late Predynastic El Amrah Male 190.0 186 129.0 148 130 134.0 100 104 69.0 51 24.0
2 BC BC Late Predynastic El Amrah Male 172.0 171 124.0 126 110 117.0 98 95 61.0 45 27.0 97.0 74.0 C D 1140
2 BC BC Late Predynastic El Amrah Male 191.0 187 136.0 135 115 128.0 104 98 71.0 52 25.0 94.0 74.0 A B 1490

2 BC BC Late Predynastic El Amrah Male 185.0 184 145.0 132 119 130.0 102 100 71.0 54 23.0 98.0 70.5 C 1505
2 BC BC Late Predynastic El Amrah Male 187.0 185 134
2 BC BC Late Predynastic El Amrah Male 187.0 189 130.0 133 132.0 103 102 71.0 48 25.0 99.0 70.0 C D 1375
2 BC BC Late Predynastic El Amrah Male 176.0 176 134.0 131 112 119.0 103 96 71.0 50 25.0 93.0 74.5 A B 1315
2 BC BC Late Predynastic El Amrah Male 189.0 186 137.0 133 102 1465

2 BC BC Late Predynastic El Amrah Male 191.0 189 134
2 BC BC Late Predynastic El Amrah Male 171.0 172 120
2 BC BC Late Predynastic El Amrah Male 173.0 173 125.0 133 111 119.0 95 94 70.0 46 24.0 99.0 69.0 C 1220
2 BC BC Late Predynastic El Amrah Male 191.0 190 120.0 144 99 1400
2 BC BC Late Predynastic El Amrah Male 196.0 195 132

2 BC BC Late Predynastic El Amrah Male 183.0 183 136.0 136 1440
2 BC BC Late Predynastic El Amrah Male 185.0 182 131.0 131 127.0 104 98 67.0 94.0 75.0 B 1350
2 BC BC Late Predynastic El Amrah Male 187.0 187 130.0 122 118.5 103 91 66.5 49 25.0 88.0 79.5 - A 1260
2 BC BC Late Predynastic El Amrah Male 194.5 192 133.0 132 124.0 104 104 74.0 48 23.5 100.0 69.0 C 1450
2 BC BC Late Predynastic El Amrah Male 193.0 193 128.0 131 1380

2 BC BC Late Predynastic El Amrah Male 196.0 194 132.0 136 126.0 1500
2 BC BC Late Predynastic El Amrah Male 188.0 187 134.0 129 1380
2 BC BC Late Predynastic Hou Male 179.0 178 132 111 119.0 101 96 66.0 50 23.0 95.0 74.0 B
2 BC BC Late Predynastic Hou Male 186.0 184 136.0 133 116 127.0 107 103 72.0 53 27.0 96.0 72.5 B C 1430
2 BC BC Late Predynastic Hou Male 185.0 183 139.0 131 118 127.0 105 98 70.0 51 26.0 93.0 75.0 A B 1430

2 BC BC Late Predynastic Hou Male 187.0 185 136.0 131 114 124.0 102 99 77.0 56 25.0 97.0 69.0 A B 1420
2 BC BC Late Predynastic Hou Male 194.0 194 134.0 138 109 116.0 100 98 68.0 49 24.0 98.0 71.0 C 1525
2 BC BC Late Predynastic Hou Male 190.0 189 136.0 130 116 127.0 107 104 75.0 53 25.0 97.0 71.0 B C 1430
2 BC BC Late Predynastic Hou Male 182.0 180 128.0 131 111 126.0 99 98 63.0 45 25.0 99.0 71.0 D 1300

Table 4.1: An excerpt showing the first two, of 32, data tables presented in the appendix of Thomson and Randall-
MacIver (1905).

149 Descriptive and Inferential Analyses

All totalled, there are 23 separate columns of information each with close to 1000 or more
values to conduct an analyses with. This raises a couple of important questions:

1. What exactly do we mean by “analyses” in this context?

2. Given the sheer number of distinct values, how can we discuss this data in a practical and
meaningful way?

Listing the complete set of values each time we want to reference the data would be wildly
impractical. And even if we were absurdly committed to doing so, it is safe to say that our meagre
primate brains simply are not equipped to juggle that much information at once. What we are
after then are clear, compact, and accurate descriptions of the data that still capture its essential
features. Put another way, we need to distil the data’s chaos into something intelligible. That is
the essence of “conducting” an analysis and, while this may seem a hopeless task given the sheer
volume of data, there is often a surprisingly large amount of order buried within this seeming
chaos.

4.2 Descriptive and Inferential Analyses

The analysis of data is typically driven by two main objectives. The first is descriptive: to
summarize the data in ways that are intuitive and meaningful. Perhaps unsurprisingly, this is
commonly referred to as a descriptive analysis. The second objective is inferential: to use
those summaries to make conclusions that reach beyond the data at hand. These conclusions are
generally assumed to have some form of practical relevance2—for example, perhaps they help to
answer a key research question. This process is known as inferential analysis, and it always
builds upon descriptive analysis as a necessary foundation.

In many respects a descriptive analysis should be a purely empirical endeavour. To the
best of the analyst’s ability, it seeks to answer a simple question: what can be said with certainty
about this data? This often involves computing summary statistics that characterize the dataset
as a whole. For example, calculating familiar measures such as the mode, median, and mean, or
visualizing the distribution using graphs like histograms, are all methods that tell us something
about which values are most commonly observed in the data set and how the values as a whole
are distributed.

Inferential analysis goes a step further by introducing reasonable assumptions that allow
us (the analyst) to make predictions or generalizations that extend beyond the data at hand. In
most cases, we are not interested in the dataset for its own sake—we care about what it represents

2While practical relevance should be a requirement for any inferential analysis, many such analyses are performed
more out of tradition than genuine purpose. This isn’t cynicism—just the voice of experience, tinged with a bit of
jadedness.

4. Taxonomies of the Profane – Variables, Scales, and Their Unholy Properties 150

more broadly. That is, we want to know what can it tell us about a broader population, what
trends might it reveal about an underlying system, what future outcomes might it help us predict?
Statistical methods that allow us to extrapolate in this respect are inferential in nature.

4.3 Data

The word data has appeared frequently throughout this book, often without much reflection
as to what it actually means. Given that data is the central subject of both descriptive and
inferential analysis, it is perhaps worth taking a moment to clarify. At its core, data refers to
a collection of observations about something. The singular form, datum, refers to just one of
those observations. The “something” in question is usually the phenomenon the researcher is
investigating—this could be the number of cells in a slice of brain tissue, the rate of deaths per
capita, how quickly participants learn a behavioural response; or any number of other things that
can be measured or classified in some way.

Before going further, it is worth drawing a distinction between what we will refer to as
statistical data—the kind typically used in research and analysis (e.g., see Table 2.1 and Table
4.1)—and the kind of data used to train machine learning models (e.g., pictures of cats, playlists
of Eurodance hits, or whatever else the algorithm gods demand). In the latter case, what is being
fed to the model is perhaps more akin to collections of stimuli than it is data in the traditional
statistical sense of the term. That said, in machine learning contexts, the terms data and stim-
uli are often used interchangeably. When this book refers to “data”, you can assume it means
statistical data.3

4.4 Variables

Examining Table 4.1, we can see that each row corresponds to a single skull examined by Thom-
son and Randall-MacIver (1905). Each column captures a different type of information recorded
for that skull. Some columns contain categorical details—such as the ruling dynasty at the time
of burial, the archaeological site where the skull was found, or the presumed sex of the individ-
ual—while others include numeric measurements, like the glabello-occipital length (gol), ophryo-
occipital length (ool), and basi-bregmatic height (bbh), just to name a few.4

Each column in a dataset represents what we call a variable—a single characteristic or
property that can differ (i.e., vary) across the observations. It is worth noting that this use of the
term “variable” is slightly different from how it is often used in something like algebra, which is
probably the most familiar context in which the term appears. In algebra, a variable is a symbol

3Yes, I’m aware I haven’t defined the term “statistic” yet. But some knowledge comes at a price—and you
haven’t bled nearly enough.

4View the data file’s README document for the complete listing.

https://github.com/statistical-grimoire/thomson-randallmaciver-1905/blob/main/README.md

151 Variables

that stands for an unknown value or set of values (hence the classic phrase “solve for x”, with
x being the variable). Still, the two meanings have an underlying connection because, in both
cases, we are referring to something—be it a symbol, label, or phrase—that can represent different
values. For example, in Table 4.1 sex is a variable that (from Thomson and Randall-MacIver’s
perspective) has two possible values: “male” and “female.” Cranial capacity (cc) is also a variable,
but it is a variable which can take on a theoretically infinite amount of possibilities that extend
anywhere from 0 to infinity in the positive direction.5

The way you conduct a descriptive or inferential analysis hinges on the nature of your
variables. For instance, it makes little sense to try to compute the mean average of categorical
traits such as eye colour, biological sex, or whether a plant is alive or dead. While this may seem
self-evident, these types of variables are often represented numerically in data files. For example,
“Alive” might be coded as 1 and “Dead” might be coded as 0, giving the illusion that arithmetic
operations are appropriate. But calculating a mean assumes the data have specific numerical
properties: namely, that the values lie on a scale where addition and division are meaningful.
When these conditions are not met, the result is not just meaningless—it is misleading. For
example, if you have 20 plants that are alive and 30 that are dead, calculating the mean would
yield an “aliveness” score of 0.4. But what does that actually tell you? That the average plant
is 40% alive? As we will see, the mean is intended to reflect the value most typical of the data.
But what exactly is “typical” about 0.4 when, under our coding scheme, the only valid values are
0 (dead) and 1 (alive)? No plant in the dataset is 40% alive. The absurdity of this result lays
bare the danger of treating categorical variables as if they were genuinely numerical. Just because
something is represented by a number does not mean it is a number.

This issue strikes at the very core of what it means to measure something. Once a research
question is identified, what needs to be measured often feels self-evident—duration, height, topog-
raphy, severity, intensity, hardness, rate, and so on. But how to measure it is an entirely different
matter. Suppose we want to assess the height of 100 people. One approach is straightforward:
use a tape measure and record each individual’s height in metres. Alternatively, we could assign
rankings—giving the tallest person a score of 100 and the shortest a score 1. A third option
would be to sort them into broad categories: short, medium, and tall. Or we might simply ask
them, via questionnaire, “How tall are you in metres?” While one of these methods clearly rises
above the others in terms of scientific precision, each method produces its own kind of height
“measurement”.6 And therein lies the deeper problem: not every measurement is created equal.

5This is not to suggest that Godzilla-sized skulls are in any way feasible. An asymptote lurks somewhere along
the continuum — and long before we reach kaiju level proportions, the laws of physics (and the poor creature’s
neck) would surely intervene.

6To show how flexible measurement can be, in Canada, distance is commonly measured in units of time. For
example: “Eh bud, d’ya know how far Timmies is?” ‘Oh, bout five minutes. Just make a larry, it’s kitty-corner
from the rink.’ “Thanks eh.”

4. Taxonomies of the Profane – Variables, Scales, and Their Unholy Properties 152

4.5 Measurement and The Problem of Measurability

Prior to the late 1940s, scientific measurement was primarily understood as the assignment of
numerals to real-world magnitudes—quantities that were assumed to exist independently of the
observer. The central idea being that mathematical relationships could meaningfully represent
relationships among physical objects or phenomena. However, a philosophical dilemma began
to take shape as the field of psychology sought to align itself with the standards of the natural
sciences. There was heated debate about whether mathematical relations could validly capture
the complexities of the human mind. At the heart of this controversy was a deceptively simple
question: Is it possible to measure human sensation? (Stevens, 1946, p. 677).

To get a sense of the problem being grappled with, suppose you ask participants in a study
to rate their happiness on a 11-point scale, where 0 represents the absence of any happiness and
10 represents the happiest they could conceivably be. For simplicity, imagine you only have two
participants—one selects a 3, the other a 5. A common research practice is to compute the mean
of the scores, which in this case would be 4 (see equation 4.1).

3 + 5

2
=

8

2
= 4 (4.1)

This seems straightforward enough. The average happiness level across these two people is 4.
However, there is a potential problem lurking here: the “psychological distance” between the
numbers on the scale may not be consistent across individuals. What one person considers a 5,
another might interpret as a 4, or as a 6, or as a 7, or as a 8.4, or a 2.66, or some other value.
That becomes an issue when we calculate a mean because the process of adding the values in
the numerator assumes these values have a standardized meaning independent of the person. For
instance, if instead the participants had reported 2 and 6 we would similarly arrive at 8 in the
numerator (see equation 4.2).

2 + 6

2
=

8

2
= 4 (4.2)

However, we have no compelling reason to assume that a mathematical equality such as (3+ 5) =

(2 + 6) should hold in this context (see 4.3), because these numbers reflect subjective judg-
ments—not objective quantities grounded in a standardized unit of measurement. Is it math-
ematically true that both (3 + 5) = 8 and (2 + 6) = 8? Yes, arithmetically. But in the realm
of subjective ratings, such an equality only holds if participants are interpreting the scale in a
comparable way. While that is possible, it is far from guaranteed given the vast differences in
individual physiology and lived experience people have.

153 Scales of Measurement

(3 + 5)
?
= (2 + 6)

?
= 8 (4.3)

And the problems do not end there. More fundamentally, there is no objective means of verifying
the accuracy—or even the honesty—of any subjective report. We are left to trust that participants
are both willing and able to faithfully describe their internal states. This issue, often referred to as
the problem of introspection, has haunted Psychology since its inception, tracing back to Wilhelm
Wundt’s 19th-century laboratory, where the first systematic efforts to understand “minds” began.7

None of this is to suggest that subjective assessments should be dismissed outright as pseu-
doscience and you would be hard pressed to find anyone in the modern day dismissing these types
of measures out of hand. As Labovitz (1967) contends, there may be some practical value—how-
ever impure—in treating such ratings as more numerical than they truly are. Despite their crude,
unstable, and potentially erroneous nature, these measures may still contain just enough precision
to tease some signal from the noise. By analogy, the literal sound an engine makes is not what
powers a vehicle, but a skilled mechanic can sometimes diagnose a problem from the sound alone.8

Subjective assessments may be similar in this respect. Introspection is, without doubt, a murky
cauldron—but an obsession with methodological purity does risk sacrificing potentially useful data
on the altar of perfectionism. We ought not discard what might yield insight simply because it
falls short of an ideal.

4.6 Scales of Measurement

The most influential attempt to resolve the problem of measurability came from Stevens (1946),
who defined measurement as “the assignment of numerals to objects or events according to rules”
(p. 677)—a view that aligned with the operationalist philosophy dominant at the time. When
we use a rule to assign numbers to aspects of objects or events, we create a scale, and Stevens
proposed that measurements could be classified into four distinct types: nominal, ordinal, interval,
and ratio. These scales differ in how closely the numbers we use reflect the real-world properties
we are trying to measure. Stevens devised these scales based on the degree of correspondence (i.e.,
isomorphism) between the properties of numbers in a series and the the real-world properties we
are trying to measure. This relationship, in turn, determines which mathematical operations are
meaningful for a given measurement. The four scales are often viewed as forming a hierarchy of
increasing numerical richness.9

7One could argue that this problem traces back even earlier, to the foundational work of Ernst Heinrich Weber
and Gustav Fechner in psychophysics—research that Wundt deeply admired and which heavily influenced his own.

8Though, one does rather expect a mechanic to occasionally look under the hood as well.
9Hang in there—it’s less arcane than it sounds (even with words like *isomorphism* thrown around). I promise

it’ll make more sense by the third reread. For a deeper dive into these measurement scales and their theoretical
foundations, see Stevens 1951.

4. Taxonomies of the Profane – Variables, Scales, and Their Unholy Properties 154

4.6.1 Nominal Scales

As was previously mentioned, numbers can be used to represent the values of a variable. For
instance, if you have catalogued the “handedness” of various individuals, you might assign 0 for
ambidextrous, 1 for left-handed, and 2 for right-handed. One of the most basic properties of
numbers is that each number is distinct from every other number: for example, 1 6= 2, 1 6= 3,
1 6=

√
3, and so on ad infinitum. Likewise, identical numbers are treated as equivalent: 1 = 1,

2 = 2,
√
3 =

√
3, etc. Nominal scales of measurement preserve this property of distinctness and

equivalence that numbers have. In other words, they allow us to determine whether two values
refer to the same category or not, but they do not carry any information about order, magnitude,
or arithmetic relationships. In our handedness example, we are simply labelling three distinct
categories. The numbers here are symbolic: 2 does not imply that right-handedness is “greater”
than left-handedness, only that 1 6= 2 6= 0.

Mathematics aside, nominal measurement scales are fundamentally about categorizing ob-
servations into mutually exclusive10 unordered groups. The numbers are just convenient labels.
Common examples include binary responses like “yes” or “no,” taste qualities such as sweet, sour,
salty, bitter, and savoury, or biological traits like feeding strategy (e.g., herbivore, carnivore, om-
nivore, detritivore), disease presence (e.g., infected vs. not infected), or treatment group (e.g.,
placebo, drug A, drug B). What matters is not the number itself (any set of numbers can be
used), but the category it stands in for.

At the risk of undermining what was just said, in many cases, researchers do not actually
bother coding nominal categories as numbers at all. For example, Table 4.1 stores the nominal
variables (dynasty, location, sex) as plain text. Modern computers handle character strings effi-
ciently, and it is often easier to interpret variable levels when they are stored in a human-readable
format. Of course, exceptions exist—especially in contexts like regression analysis, where categor-
ical variables must be converted into numerical representations to be included in the model.

4.6.2 Ordinal Scales

Ordinal scales share the properties of distinctness and equivalence found in nominal scales,
but they also introduce the crucial property of order. That is, the numbers can be arranged
meaningfully along a ranked continuum. For example, 1 is greater than 0, 2 is greater than 1,
3 is less than 4, and so on. In other words, ordinal scales impose a logical sequence—such as
0 < 1 < 2 < 3 < 4—on the categories they represent. When coding variables that have an
inherent order, the numerical values used should reflect that ordering.

A classic example is letter grades. A grade of A reflects a higher level of academic perfor-

10Mutually exclusive means that each observation can belong to only one category. You cannot, for instance, be
both right-handed and ambidextrous.

155 Scales of Measurement

mance than a B, which in turn reflects higher performance than a C, and so forth. These categories
are often translated into grade point values—e.g., A = 4.0, B = 3.0, C = 2.0, D = 1.0—which
makes the ranking explicit: 4.0 > 3.0 > 2.0 > 1.0. However, this is where the usefulness of the
numbers stops. We cannot meaningfully say that an A is “twice as good” as a C, or that the
difference between a B and a C is the same as the difference between an A and a B. This is
because the criteria for assigning these grades differ across courses, disciplines, and institutions.
The numeric labels indicate order, but not magnitude or difference (see Box 4.1).

Other examples of ordinal scales include developmental stages in biology (e.g., larva →
pupa → adult), where the stages follow a clear order but the differences between them are not
necessarily equal in duration or complexity. In chemistry and safety contexts, hazard levels (e.g.,
flammable → highly flammable → extremely flammable) represent increasing danger, but again
without uniform steps. In astronomy, seeing conditions are rated subjectively as “poor,” “fair,”
“good,” and so on, these are ordered categories that describe atmospheric clarity without precise
measurement. Similarly, the Fujita Scale for tornadoes ranks storm intensity from F0 to F5 based
on observed damage, providing an ordered but not evenly spaced classification.

4.6.3 Interval Scales

The interval scale is the first scale in which measurements are meaningfully numerical, supporting
most standard mathematical operations with minimal risk of misapplication. Like ordinal scales,
interval scales preserve both distinctness (different numbers represent different things) and order
(larger numbers represent greater amounts). But interval scales go a step further by allowing
meaningful statements about the differences between values—because the units along the scale
are empirically equal.

Take, for example, the span of time between certain historical events. The difference between
the years 1347 and 1014 is the same as the difference between 1666 and 1333: in both cases, exactly
333 years separate the two points. These differences are equivalent because a year is a standardized,
empirically defined unit—it corresponds to the time it takes the Earth to complete one full orbit
around the Sun, or more precisely, the time between two vernal equinoxes (when the Sun crosses
the equator heading north and a blood sacrifice is demanded). Crucially, this unit does not change
depending on when it is measured. A year is a year, whether you are counting from the fall of
Rome or the end of the world.11

Often, when we measure something to be a value of zero, we are not just assigning a num-
ber—we are declaring the absence of the thing itself. For instance, a height of 0 metres implies no
person. A scale reading 0 kilograms suggests nothing is being weighed. However, interval scales

11A small caveat: we are treating the empirical unit of a year as if it were perfectly constant, when in fact
it fluctuates by fractions of a second due to gravitational interactions, axial wobble, and orbital quirks. These
variations are imperceptible to humans and rarely matter in practice—but over time, the errors accumulate. This
is, of course, the reason leap years exist: to reconcile our tidy calendar with the untidy behaviour of the cosmos.

4. Taxonomies of the Profane – Variables, Scales, and Their Unholy Properties 156

Box 4.1: The GPA Illusion

Let’s take a moment to talk about something sacred: the Grade Point Average (GPA). This

little number wields tremendous power. It determines scholarships, grad school admissions,

and sometimes whether your parents buy you dinner. But there’s a secret no one likes to talk

about: GPA is a mathematical illusion. It’s the mean average of grade point values (A = 4.0,

B = 3.0, C = 2.0, etc.), which themselves are just numbers slapped onto ordinal categories.

We know that anA is better than aB, and aB is better than aC—but is the “distance” between

them truly equal? Does moving from a B to an A represent the same leap in achievement as

going from aD to a C?

If you’re thinking “probably not,” you'd be right. Taking the mean of ordinal data is

technically a no-no because the maths assumes equal spacing between the numbers—something

ordinal scales don’t guarantee. It's like claiming the difference between silver and gold medals

is the same as between bronze and a participation ribbon. If schools were being honest and fair,

they'd use the median average instead: it respects rank without pretending the scale is evenly

spaced. It's also a notably robust statistic—so a few dodgy classes won't derail your grad school

dreams. But honesty doesn’t feed the machine. The median flattens distinctions. It produces

ties. It refuses to give the illusion of precision that bureaucracies crave. The mean, in contrast,

offers lovely decimals—3.47 vs. 3.52—that suggest meaningful differences where none may

actually exist. It is ideal for sorting, and thus ideal for systems that would prefer not to think

too hard.

Your instructors probably know better. Most of them, anyway. But the people making the

rules—the ones who decide how grades are processed—tend to prioritize convenience over

correctness.a Why else would an entire institution choose amethod so statistically indefensible?

Their unofficial motto might as well be: Numerus est veritas, etiam si mendacium—“The number is

truth, even if it’s a lie.”

aI am going to get in so much trouble for writing this.

157 Scales of Measurement

eschew this. On interval scales a value of zero does not represent the absence of the thing being
measured. For example, if we measure time in years, the year 0 does not indicate the absence of
time—it is simply a reference point.12 Consider temperature as another case. One unit on the
Celsius scale represents 1/100th of the interval between the freezing and boiling points of water
at standard atmospheric pressure. Zero degrees Celsius is defined as the freezing point of water,
but this does not represent the absence of temperature. The molecules in the water are still mov-
ing—still vibrating and colliding—meaning there is still kinetic energy present. In short, zero on
an interval scale is arbitrary, not absolute.13

This fact about zeros and interval scales has big implications for the kind of mathematics
we can conduct. Interval scales allow us to talk meaningfully about the difference between mea-
surements; however, they do not allow us to make meaningful statements about the ratio of two
measurements. For example, we cannot say that 10◦C is twice as warm as 5◦C (see Equation 4.4).

10◦C
5◦C

6= 2 (4.4)

This is one of the core issues with having an arbitrary, rather than absolute, zero. A ratio such
as Equation 4.5—

10

5
= 2 (4.5)

—implies that 10 contains two full units of whatever quantity is represented by 5. But that
logic only works when zero represents the complete absence of the thing being measured.

Interestingly, while interval scales do not support ratios of values, they do support ratios of
differences. For example, if the temperature on Monday was 10◦C and the temperature on Tuesday
was also 10◦C, the difference is 0°C—an absolute value indicating no change in temperature (i.e.,
10◦C − 10◦C = 0◦C). In this context, zero does mean “none of the thing”—it reflects a complete
absence of temperature change. In other words, talking in terms of differences gives us an absolute
zero that we can utilize in the context of ratios.

For instance, it is perfectly valid to say that the temperature change between 10◦C and 0◦C
is twice as large as the change between 5◦C and 0◦C:

12Casually referring to year 0 is a bit of a historical no-no. In the calendar used by most historians (the Gregorian
calendar), there is no year 0—time jumps straight from 1 BCE to 1 CE with no pause for breath. The concept of zero
didn’t exist in Roman numerals, so early timekeepers just skipped it. Astronomers, being a more mathematically
inclined bunch, use a system that does include a year 0—because trying to do calculations across 1 BCE/1 CE
without one is annoying.

13This is why the concept of absolute zero exists, it is the theoretical point at which all molecular motion stops:
−273.15◦C

4. Taxonomies of the Profane – Variables, Scales, and Their Unholy Properties 158

10◦C − 0◦C
5◦C − 0◦C

= 2 (4.6)

Now admittedly, if you look at how Equation 4.6 arrives at a value of 2, you might be
confused—because it appears to be doing exactly what Equation 4.4 said was not permissible.
Step by step, the calculation proceeds as follows:

10◦C − 0◦C
5◦C − 0◦C

=
10◦C
5◦C =

10��
◦C

5��
◦C

= 2 (4.7)

The second step (in bold text) looks identical to Equation 4.4. But it is not the same.
In Equation 4.4, the numerator and denominator represent absolute temperatures—values on an
arbitrary scale where zero does not represent an absence of temperature. In contrast, in Equation
4.7, both the numerator and denominator represent temperature differences, and differences on
an interval scale are meaningful because they reflect quantities with consistent units.

Unfortunately, this is a distinction that the maths alone can obscure. The symbolic opera-
tions may look identical, but the interpretation depends entirely on what the numbers represent.

4.6.4 Ratio Scales

Of the four scale types identified by Stevens (1946), ratio scales are the most robustly numeric.
They retain all the properties of nominal, ordinal, and interval scales, but with one critical addition:
a true zero point that signifies the complete absence of the measured attribute. This allows
for meaningful ratio comparisons—for example, one value can be said to be twice another—and
eliminates concerns about the appropriateness of mathematical operations like multiplication or
division. Ratio scales are especially prevalent in the natural sciences, where quantities such as mass
(e.g., of tissues), cell count, blood volume, elapsed time, concentration (e.g., parts per million),
frequency, reinforcer amount, and behavioural response duration are measured from zero and up,
enabling a full range of mathematical analysis.

4.6.5 Implications of Scale Type for Statistical Analysis

The concept of measurement scales carries with it a deceptively simple but important warning:
it is entirely possible to use numbers incorrectly. That is, one can feed numerical values into a
statistical formula, obtain a result, and walk away with a clean-looking number—but that number
may bear little resemblance to anything meaningful in the real world (Roberts, 1985). Worse, it
might produce an interpretation that is subtly misleading and difficult to detect.

Think of a statistical procedure like a meat grinder: it does not care what you put in it.
Toss in high-quality ingredients, and you will get something palatable. Toss in a boot, and you

159 Scales of Measurement

will still get an output—just not one you probably want to serve. Likewise, statistical methods are
indifferent to the scale of measurement used. They will happily crunch any numbers you supply,
whether those numbers actually warrant mathematical manipulation or not. But just as pureed
leather makes a poor sausage, treating ordinal or nominal data as if it were interval or ratio can
yield results that are technically valid but conceptually indigestible.

The entire project of Stevens (1946) was, in many ways, aimed at avoiding this exact mis-
take. His advocacy centred on the principle of invariance—that we should use statistical and
mathematical procedures that preserve the properties of the underlying scale (Stevens, 1968). By
identifying the scale on which a variable is measured, researchers can more appropriately select
analyses that respect the structure of the data and preserve its intended meaning.

To see why this matters, consider a simple experiment designed to test whether a drug
reduces headache severity. One group of participants receives a placebo, another group receives
an active treatment. An hour after taking the placebo or treatment, participants rate their current
headache intensity on a 5-point Likert scale, using the labels shown in Table 4.2.

Likert Value Description Interpretation True Discomfort Value

1 No headache No pain, no symptoms 1

2 Mild headache Noticeable but not bothersome; no
impairment 3

3 Moderate
headache

Interferes somewhat with activities;
may require rest or over-the-counter
medication

10

4 Severe headache Significant discomfort; activities
impaired; likely requires medication 32

5

Extremely
severe/
incapacitating
headache

Cannot function; may require lying
down or medical intervention 100

Table 4.2: Example of a 5-point Likert scale for headache severity, including an illustrative mapping to an underlying
true discomfort value.

As the researcher, you do not have direct access to participants’ internal experience of pain.
There’s no standardized unit of discomfort that you can measure like you would millimetres or
kilograms. The Likert scale values are, in effect, numerical placeholders for subjective states.

Now suppose—just for argument’s sake—that you do know the true underlying discomfort
each Likert value represents. Rather than simple integers from 1 to 5, perhaps the “true” subjective
intensity of the headache follows an exponential (1, 3, 10, 32, and 100) progression when compared
to the Likert scale divisions. Notice that this alternative scale preserves the order of the original
ratings, but the intervals between points are no longer equal. The leap in discomfort from a “1” to a
“2” on the Likert scale is not actually equivalent to the leap from “4” to “5”; the subjective change

4. Taxonomies of the Profane – Variables, Scales, and Their Unholy Properties 160

is far greater in the latter. Put another way, the Likert scale preserves the rank order of discomfort
but fails to represent differences between discomfort levels in a meaningful or proportionate way
to the person’s “true” experience.

This has real consequences for how we interpret certain statistical results. For instance,
researchers commonly use a statistic called Cohen’s d to quantify the size of a treatment effect. In
this context, Cohen’s d would give us a measure of how effective the drug was at reducing headache
severity compared to the placebo. However, Cohen’s d relies on means, which assume the data
are measured on at least an interval scale—that is, where equal differences between values reflect
equal differences in the underlying construct. The Likert scale used here, by contrast, preserves
only the ordering of values, not the spacing between them. It is ordinal, not interval. The “true”
discomfort values we have listed, on the other hand, do meet the criteria of an interval scale.

To explore the consequences of this mismatch, we can simulate this experiment in R thou-
sands of times, randomly generating data and calculating Cohen’s d for each iteration—once using
the raw Likert scores, and once using the true discomfort values. If the scale of measurement gen-
uinely does not matter to our Cohen’s d effect size statistic, then the values we obtain should be
roughly equivalent across both cases. In other words, we should observe similar values of Cohen’s
d regardless of which scale we use.

Figure 4.1 displays the results across 10,000 simulated experiments. The divergence between
the two versions of Cohen’s d is striking. When based on the Likert values, the effect size appears
consistently larger, overstating the drug’s effectiveness. In contrast, the effect size calculated from
the true values tells a more modest story. This mismatch illustrates just how misleading it can
be to apply interval-based statistics to ordinal data. The sausage may look the same on the
plate—but if you grind in the wrong ingredients, the result may not sit well. Respecting the scale
of measurement reduces the risk that the outcome of a statistical test is an artifact of numerical
representation rather than a valid insight.

In this vein, it is worth noting that alternative effect size measures designed for ordinal
data—such as Cliff’s delta (δ)—are not susceptible to this distortion. Because Cliff’s δ relies only
on order information, it produces equivalent results whether calculated from the Likert scores or
the true discomfort values. In other words, when the tool matches the scale, the message stays
consistent.

Because of these issues, Stevens and others attempted to prescribe which statistical methods
were appropriate for each type of measurement scale to help researchers avoid making precisely
these kind of mistakes (Robinson, 1965; Senders, 1958; Stevens, 1946). However, that endeav-
our—and Stevens’ broader framework—has not gone unchallenged.

One common criticism is that his classification system is not as clear-cut as it initially ap-
pears. Many real-world variables seem to occupy a gray area. Take intelligence (I.Q.) scores,

161 Scales of Measurement

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Cohen's d

Scale Type:

Coded (1−5) True Scale

Figure 4.1: Results from 10,000 simulated experiments comparing effect size estimates using Cohen’s d based on
Likert-scale values versus “true” exponentially scaled discomfort values. Although both scales preserve ordinal
ranking, the unequal intervals in the true values reveal that the Likert-based d consistently overestimates the
effect size. Black horizontal lines indicate the mean Cohen’s d for each scale type. This highlights how treating
ordinal data as interval can distort results—like mistaking shoe leather for sausage. Simulation code available at:
https://github.com/statistical-grimoire/ordinal-data-simulation

for example: while technically ordinal, they are often treated as though they possess interval
properties. Researchers frequently assume that differences in I.Q. scores reflect meaningful psy-
chological differences, even though the scale may not meet the strict criteria required for interval
measurement.14

Additionally, many statistical procedures that theoretically require interval or ratio-level
data often yield results similar to those produced by ordinal methods when applied to ordinal-
scale data (Baker et al., 1966). This robustness has led some to argue that, in practice, violating
scale assumptions may not always lead to catastrophic errors—at least not when the primary
concern is statistical significance (e.g., p-values). However, this reassurance comes with important
caveats:

• The consequences of misusing statistical methods can be more serious in high-stakes contexts
or when findings are generalized beyond their original scope.

• The apparent robustness often vanishes when we move beyond p-values to other statis-
tics—such as Cohen’s d—which can be heavily distorted by inappropriate assumptions about

14This is not to suggest that differences between IQ scores do or do not reflect meaningful psychological differ-
ences—only that some researchers proceed as though they do.

https://github.com/statistical-grimoire/ordinal-data-simulation

4. Taxonomies of the Profane – Variables, Scales, and Their Unholy Properties 162

scale.

Some critics go even further, questioning whether there is any necessary connection at all
between level of measurement and the validity of a statistical technique (Gaito, 1980). This
is arguably true—again—if the only statistic you care about is the p-value. Others warn that
strict adherence to Stevens’ taxonomy may encourage a kind of statistical “mindlessness,” where
researchers rely on rigid checklists instead of thoughtful judgment.15

The debate over Stevens’ framework is long-standing, and many critiques are directed less
at his core principles than at overly simplistic—or at times uncharitable—interpretations of them
(see Zand Scholten & Borsboom, 2009, for a summary). Yet despite the criticism, Stevens’ central
insight is difficult to dispute: researchers must remain mindful of how the scale of measurement
can influence both the validity and the interpretation of statistical conclusions.

But the story does not end there. The idea of measurement scales is just one piece of a
larger field known as Measurement Theory, which in turn sits within an even broader philosophical
landscape that includes competing frameworks such as operationalism, realism, and information
theory, to name a few. As fascinating (and important) as these topics are, this book is not
primarily concerned with the philosophy of measurement. The discussion so far has been driven
by pragmatism: in the context of doing research, Stevens’ taxonomy remains genuinely useful for
thinking about data and informing analytic decisions.

Stevens gave us a practical and widely adopted classification system—but in the eyes of the
most rigorously developed modern theory of measurement, Representational Measurement Theory
(RMT; Luce & Suppes, 2001), his framework does not quite qualify as real measurement. From the
RMT perspective, Stevens’ definition is too loose, and some of his scales—nominal and ordinal—do
not meet the criteria for genuine measurement at all. For RMT, assigning numbers is not enough;
measurement must involve assigning numbers that preserve the structure of the empirical world.

So, Stevens’ scales are not so much wrong as they are just incomplete. They provide a
helpful, practical way to classify data types and choose appropriate methods, but they do not
offer a rigorous foundation for what measurement truly means. You can (and should) still use
them—just do not treat them as the final word.

Think of it this way: Stevens’ framework is like Newtonian physics—practical, useful, and
perfectly adequate for most everyday purposes (including landing on the Moon). But just as
Newton’s laws break down at relativistic speeds or near black holes—where Einstein’s theory is

15This is an odd complaint, as it seems to assume that, had Stevens kept quiet, researchers would have sponta-
neously developed better judgment on their own. Still, the concern isn’t entirely without merit. Any framework,
however well-intentioned, can be misapplied as dogma. And when tools like measurement scales are treated as
gospel—especially by novices—they risk crowding out the deeper, more nuanced reasoning that good statistical
practice demands.

163 Other Distinctions Between Variables

needed—Stevens’ model breaks down when we start asking deeper questions about the nature of
measurement. In that analogy, RMT is Einsteinian: more precise, more demanding, and more
accurate at the theoretical edges (but also more complex).

One especially intriguing development within this more rigorous framework of RMT is
additive conjoint measurement, which demonstrates that, under certain conditions, meaningful
interval-level representations can be constructed from purely ordinal data—so long as specific
axioms are satisfied. This has powerful implications for the social sciences, where directly mea-
surable quantities are rare, but ordinal judgments (like rankings or preferences) are common. In
short: with the right structure, even simple orderings can yield valid and mathematically rich
measurements.

4.7 Other Distinctions Between Variables

Variables are not only distinguished by their scale of measurement; they can also be more broadly
categorized as either qualitative or quantitative. A qualitative variable represents non-numeric
characteristics or categories. These categories may be ordered (e.g., letter grades) or unordered
(e.g., handedness), but they should always be mutually exclusive—that is, each observation should
fall into one and only one category. For instance, a person cannot be both left-handed and right-
handed simultaneously; if such a case exists, it necessitates a distinct category (e.g., ambidextrous).
In practice, qualitative variables serve to classify observations into discrete groups, which is why
the terms qualitative variable and categorical variable are often used interchangeably. Accordingly,
it should be clear that any variable measured on a nominal or ordinal scale would also be considered
qualitative in nature.

A quantitative variable tells you something about how much there is of something—it
deals in actual numbers that represent real amounts or magnitudes. Unlike qualitative variables,
which categorize or rank observations, quantitative variables support meaningful arithmetic oper-
ations like addition and subtraction. They are always measured on an interval or ratio scale and
can be either discrete (e.g., number of siblings) or continuous (e.g., temperature, height).

A discrete variable is one that takes on a finite number of values (e.g., the number of cells
in a slice of brain tissue) or a countably infinite set of values (e.g., the set of odd numbers). In other
words, discrete variables are countable using the natural numbers: 1, 2, 3, and so on. Calling a
variable “discrete” means there are no possible values in between—the values are separate, distinct
steps. For example, it does not make sense to count 12.5 brain cells. Even if, under a microscope,
a cell appears partially missing, you must decide whether to count it as a whole cell or not at all.

By contrast, if it makes sense to talk about values between any two measurements, the vari-
able is no longer discrete—it is continuous. A continuous variable can, at least in theory, take
on any numeric value within a given range. These variables have uncountably infinite possibilities.

4. Taxonomies of the Profane – Variables, Scales, and Their Unholy Properties 164

Variable Scale Description Examples

Qualitative (Categorical) Nominal Categories with no inherent
order.

Handedness, Eye
colour, Species

Ordinal

Values with a meaningful
order, but differences
between values are
indeterminate.

Letter grades,
Likert-scale ratings,
Percentile ranks

Quantitative (Numerical) Interval Numeric values with equal
spacing, but no true zero

Temperature in
Celsius, Calendar Years

Ratio
Numeric values with equal
spacing and a meaningful
zero

Height, Weight,
Reaction time

Table 4.3: Summary of variables and corresponding measurement scales

For example, temperature is a continuous variable. Between 20°C and 21°C, there are infinitely
many possible values—like 20.1◦C, 20.01◦C, or 20.0001◦C. No matter how small the interval, there
is always another possible value in between. Of course, in practice, temperature often appears
discrete—especially when measured with a thermometer that rounds to the nearest degree. But
this discreteness is an illusion caused by the limitations of our measuring tools. In reality, tem-
perature varies continuously; it is our instruments (and our finite senses) that force us to round
or approximate.

Bringing this back to scales of measurement: any variable measured on an interval or ratio
scale is, by definition, also a quantitative variable.

165 Other Distinctions Between Variables

To Be Continued...

Glossary

aesthetics The modifiable visual elements of a ggplot2 graph. E.g., point shapes, fill colours,
edge colours, etc.

argument Modifiable parameters of a function that alters how it operates.

assignment operator A symbol (e.g., <-) that assigns a name to an object in R so it can be
easily sourced by the user from the computer’s memory. R contains three different assignment
operators. R Documentation: ?assignOps

boolean A term used to denote logical (true or false) statements and objects. Named after the
English mathematician and logician George Boole.

character A type of storage mode in R for character strings.

colon operator A symbol, : , used to create regular sequences of integers. R Documentation:
?colon

command console An interface used for communicating instructions to a computer and (usu-
ally) viewing outputs. On modern digital computers it typically takes the form of a software
application but, in ancient times, was a physical console of buttons and dials that you
“commanded” the computer from.

Comprehensive R Archive Network A set of mirrored servers around the world that dis-
tribute R and its associated packages.

continuous variable A quantitative variable that can take on any numeric value within a
given range.

CRAN Comprehensive R Archive Network

data A collection of observations about something.

167

Glossary 168

data frame An object class in R with rows and columns resembling a spreadsheet structure. R
Documentation: ?data.frame

datum The singular form of the word data.

delimiter A character within a data file used to delimit (i.e., define the limits of) individual
values.

dependent variable The variable that you are trying to explain, predict, or measure the effect
on. i.e., It is “dependent” on changes to other variables and is also known as the response
variable or outcome variable. In R formulas, the dependent variable typically appears
on the left-hand side of the tilde (e.g., dependent variable ~ predictor variable).

descriptive analysis A type of data analysis focused on summarizing and organizing data in a
way that reveals its features without making claims beyond the data at hand.

directory An address that directs you to a file

discrete variable A quantitative variable that consists of countable values.

error bar A graphical representation of the variation surrounding a measure of central tendency.
Displayed as lines (also called “whiskers”) extending above and below a plotted value. They
typically represent statistics such as the standard error or confidence intervals; however, they
can, in principle, illustrate any statistic that conveys variation in the data.

factor A class of object in R that has a defined set of possible values called levels. Factors are
used to represent categorical data, control the order of categories, and influence how data is
processed or displayed in visualizations and models. R Documentation: ?factor

file extension An identifier appended to the end of a file name that dictates how a file should
be read by an application. The extension is indicated by a period and followed by one to
four characters typically. E.g., my_script.R or cat.png

function A line of code that takes inputs (objects and arguments) and produces a corresponding
output.

functional A function that accepts another function as an input and produces a vector as output.
E.g., apply()

IDE integrated development environment

inferential analysis A type of data analysis that uses reasonable assumptions to make general-
izations, predictions, or decisions that extend beyond what a descriptive analysis of the data

169 Glossary

alone can show.

infinity Trying to define this is way above my pay grade (which for this textbook is literally
nothing). Just see the “Math is Fun” website:
https://www.mathsisfun.com/numbers/infinity.html

integrated development environment A software application that aims to give programmers
a nice visual workspace and comprehensive feature set with which to do their programming.

interval scale A measurement scale that provides both an order of values and equal spacing
between them, but lacks a true zero point.

level A category belonging to a factor class of object.

logical A type of storage mode in R for logical (i.e., true and false) values (also referred to as
boolean values).

logical operator A symbol used to refine logical statements. R Documentation: ?Logic

mode A classification (e.g., numeric, character, logical) of how an object is stored in R.

modulo operator A mathematical operator that returns the remainder of a dividend and divisor.

modulus The value returned using a modulo operation.

negation operator Symbolized using a exclamation mark (!), this is a type of logical oper-
ator that indicates the negation of an object’s values. For example, !x is read as “not
x.”

nominal scale A measurement scale used for labelling or categorizing without implying any order
or quantity.

non-syntactic name A object name enclosed by backticks. E.g. `fav num` <- 666 .

null value Represented as NULL in the R language, this is used to represent undefined objects.
R Documentation: ?NULL

numeric A type of storage mode in R for numbers.

ordinal scale A scale that categorizes and arranges items in a meaningful order. The intervals
between items are not necessarily equal.

outcome variable The variable that you are trying to explain, predict, or measure the effect on.

https://www.mathsisfun.com/numbers/infinity.html

Glossary 170

i.e., It is the “outcome” that results to changes in other variables and is also known as the
response variable or dependent variable. In R formulas, the outcome variable typically
appears on the left-hand side of the tilde (e.g., outcome ~ predictor).

package A collection of functions, associated documentation, and data compiled for users to
install via a online repository.

pch R’s abbreviation for “plotting character”. An integer or character value that specifies what
symbol gets plotted as a point on a graph. R Documentation: ?points

position scale In ggplot2, this refers to a type of scale that controls the location mapping of a
plot’s visual elements.

programming language A language humans use to communicate instructions to a computer.

qualitative variable A variable that represents non-numeric characteristics or categories. These
categories can be either ordered or unordered, but they must be mutually exclusive.

quantitative variable A variable that represents a numerical magnitude and supports mean-
ingful arithmetic operations. It is measured on an interval or ratio scale and may be either
a discrete variable or a continuous variable.

ratio scale A measurement scale that includes all the properties of an interval scale—ordered
values with equal intervals—plus an absolute zero point, which represents a true absence of
the quantity being measured.

relational operator A symbol (e.g., ==) that is used to determine whether a specific comparison
between two values is true or false. R Documentation: ?Comparison

reserved words Words that have specific functions and meanings within the R language and
cannot be used as syntactic names. R Documentation: ?Reserved

response variable The variable that you are trying to explain, predict, or measure the effect
on. i.e., It “responds” to changes in other variables and is also known as the dependent
variable or outcome variable. In R formulas, the response variable typically appears on
the left-hand side of the tilde (e.g., response ~ predictor).

RStudio An integrated development environment for R.

scatter plot A type of graph that is used to visualize the relationship between two paired
variables. The observations of one variable are plotted on the x-axis, while the observa-
tions of the other variable are plotted on the y-axis. The intersection of the x-y pairs

171 Glossary

are plotted as points on a Cartesian plane (i.e., a grid). For further details see https:
//www.mathsisfun.com/data/scatter-xy-plots.html

scientific notation A method of writing very large or small numbers in a compact way. E.g.,
666130000000000 can be written as 666.13× 1012 or 666.13e+12

script A text document (e.g., .R or .txt) for storing computer code that can be run or modified
by a user. Integrated development environments usually provide a separate window for
typing and saving scripts.

significant figures The digits in a numerical value that carry meaning about its precision. This
includes all nonzero digits, any zeros between nonzero digits, and trailing zeros in a decimal
number. Leading zeros are not considered significant. Significant figures are also commonly
referred to as significant digits.

subdirectory A directory nested within another directory.

syntactic name An object name that begins with a letter or a dot (not followed by a number)
and may include letters, numbers, dots, or underscores. R Documentation: ?make.names

tibble The tidyverse’s modern reimagining of the data frame.

tidy data A sacred formation of data, guided by three precepts, that form the bedrock of the
tidyverse’s magik. Also referred to as the “long format” data by unbelievers.

tidyverse A powerful set of R magick, with an underlying philosophy, that allows those devoted
to it to weave, transform, and manipulate data with a dark mystical ease that some call
unnatural.

univariate data Data which consists of a single response variable and sometimes one or more
predictor variables.

variable A single characteristic or property of that can differ from one observation to another.
Often represented by the columns of a data set.

vector In R, a (atomic) vector is an object with at least one value and a single mode. R
Documentation: ?vector

In computer programming more generally, a vector is a one-dimensional array of values.

wide format A way of structuring data such that variables are spread across multiple columns.

working directory The default address on a computer where R saves and pulls files.

https://www.mathsisfun.com/data/scatter-xy-plots.html
https://www.mathsisfun.com/data/scatter-xy-plots.html

Appendix A

<- vs. =

The original assignment operator of the S programming language was <- . The use of = to assign
names to objects was a more recent development in S’s history. This was doubtlessly motivated
by 1) the intuitive appeal of = (you are setting something equal to something else), 2) its cleaner
look, 3) its correspondence with other modern programming languages, and 4) the basic fact that
it requires one less key to type. It also has the added benefit of not resulting in confusion when
dealing with inequalities. For instance, something like x<-1 could be read as either assigning a
value of 1 to x or could be evaluating whether x is less than −1. As written here, the statement
will result in the former unless appropriate spacing is applied; i.e., x < -1 .

Despite the obvious benefits of using = , much of R’s core user-base has held as steadfastly
to <- as a child would to a teddy bear. To understand the reluctance towards using = , it is
helpful to know that, prior to its use as an assignment operator, the = was used to designate
values to arguments inside a function (see section 1.4.7) and, to this day, it still serves this purpose.
Consequently, when it was granted the coveted position of “assignment operator” it now had dual
syntactic roles within the language but with a particular limitation. Specifically, you cannot use
it to assign a name to an object within an R function’s argument. i.e., you cannot use = to set
an argument and assign an name simultaneously. However, you can do this using the <- .

For example, if we use R’s sum() function to calculate the sum of the numbers one through
five using = to set the function’s main argument. We can see that, while the function works as
intended (producing a value of 15), there is no new variable generated that stored the values one
through five:

173

A. <- vs. = 174

1 sum(x = 1:5)

2 x

[1] 15

Error: object 'x' not found

However, if we run the same code, but use the <- to set the argument, we can see that the
numbers 1 through 5 are stored.

1 sum(x <- 1:5)

2 x

[1] 15

[1] 1 2 3 4 5

The <- also has an advantage in that a simple variant of it, <<- , allows you to create
variables within your own custom-made functions that are executable outside the scope of that
function. Admittedly, this is a more advanced usage than readers of this text are likely to need,
but it is an useful feature to know about as skills with R develop.

As a basic illustration, suppose we created a function, rational_pi() , that rounds π to
3 like so...

1 rational_pi = function() {

2 rat_pi <- round(pi)

3 return(rat_pi)

4 }

When we run the function, it straightforwardly spits out a 3

1 rational_pi()

[1] 3

But when we run object rat_pi we get an error message saying the object cannot be found:

1 rat_pi

Error: object 'rat_pi' not found

At face value this is odd behaviour because, to be able to run the line return(rat_pi) , the
object rat_pi must have been stored at some point. And it was stored, but only within the
scope of the function. To make rat_pi available outside the function’s scope, we can employ
<<- when we define the function:

175

1 rational_pi = function() {

2 rat_pi <<- round(pi)

3 return(rat_pi)

4 }

5

6 rational_pi()

7 rat_pi

[1] 3

[1] 3

Now we have a “rational” version of π stored as rat_pi . However, one other intriguing feature
of <<- needs to be mentioned in this context: <<- only assigns a value within the function’s
scope, if the object you are creating does not already exist inside the function. However, the value
will still get assigned globally (i.e., outside of the function’s scope). This is easiest to comprehend
with a simple example:

1 rational_pi = function() {

2 rat_pi <- 10

3 rat_pi <<- round(pi)

4 return(rat_pi)

5 }

6

7 rational_pi() #Notice the function produces 10

8 rat_pi #However, the object stores 3

[1] 10

[1] 3

A couple of other final points in favour of <- is its reversibility (i.e., being able to write it
as -> and ->>) and the fact that most of the example code inside R’s help documentation is
written using <- . Thus, in theory, using <- consistently is likely to make this documentation
more intelligible at a quick glance for a user than constantly using = would.

Appendix B

HCLColour Palettes

177

B. HCL Colour Palettes 178

Grays Light Grays Blues 2

Blues 3 Purples 2 Purples 3

Reds 2 Reds 3 Greens 2

Greens 3 Oslo Purple−Blue

Red−Purple Red−Blue Purple−Orange

Purple−Yellow Blue−Yellow Green−Yellow

Red−Yellow Heat Heat 2

Terrain Terrain 2 Viridis

Plasma Inferno Rocket

Mako Dark Mint Mint

BluGrn Teal TealGrn

Emrld BluYl ag_GrnYl

Peach PinkYl Burg

BurgYl RedOr OrYel

Purp PurpOr Sunset

Magenta SunsetDark ag_Sunset

BrwnYl YlOrRd YlOrBr

OrRd Oranges YlGn

YlGnBu Reds RdPu

PuRd Purples PuBuGn

PuBu Greens BuGn

GnBu BuPu Blues

Lajolla Turku Hawaii

Batlow

Figure B.1: Sequential Palettes

179

Blue−Red Blue−Red 2 Blue−Red 3

Red−Green Purple−Green Purple−Brown

Green−Brown Blue−Yellow 2 Blue−Yellow 3

Green−Orange Cyan−Magenta Tropic

Broc Cork Vik

Berlin Lisbon Tofino

Figure B.2: Diverging Palettes

Pastel 1 Dark 2 Dark 3

Set 2 Set 3 Warm

Cold Harmonic Dynamic

Figure B.3: Qualitative Palettes

References

Baker, B. O., Hardyck, C. D., & Petrinovich, L. F. (1966). Weak measurements vs. strong statistics: An
empirical critique of s. s. stevens’ proscriptions on statistics. Educational and Psychological Mea-
surement, 26(2), 291–309. https://doi.org/10.1177/001316446602600204

Becker, R. A., & Chambers, J. M. (1984). S: An interactive environment for data analysis and graphics.
Wadsworth.

Brewer, C. A. (1994). Color use guidelines for mapping and visualization. In A. M. MacEachren & D. R. F.
Taylor (Eds.), Visualization in modern cartography (pp. 123–147, Vol. 2). https://doi.org/10.1016/
B978-0-08-042415-6.50014-4

Carr, D. (1994). Using gray in plots. ASA Statistical Computing and Graphics Newsletter, 2(5), 11–14.

Carr, D. (2002). Graphical displays. In A. H. El-Shaarawi & W. W. Piegorsch (Eds.), Encyclopedia of
environmetrics (pp. 933–960, Vol. 2). John Wiley & Sons.

Carr, D., & Sun, R. (1999). Using layering and perceptual grouping in statistical graphics. ASA Statistical
Computing and Graphics Newsletter, 10(1), 25–31.

Clagett, M. (1989). Ancient Egyptian science : A source book. American Philosophical Society.

Cleveland, W. S. (1993). A model for studying display methods of statistical graphics. Journal of Compu-
tational and Graphical Statistics, 2(4), 323–343. https://doi.org/10.2307/1390686

Doré, G. (1862). Little red riding hood [Painting]. National Gallery of Victoria, Melbourne. https://www.
ngv.vic.gov.au/explore/collection/work/3918/

Free Software Foundation. (2024). What is free software? Retrieved August 26, 2024, from https://www.
gnu.org/philosophy/free-sw.html

Gaito, J. (1980). Measurement scales and statistics: Resurgence of an old misconception. Psychological
Bulletin, 87 (3), 564–567. https://doi.org/10.1037/0033-2909.87.3.564

Hunt, P. (2024). Source code pro [version 2.042R-u_1.062R-i]. https://github.com/adobe-fonts/source-
code-pro

Labovitz, S. (1967). Some observations on measurement and statistics. Social Forces, 46(2), 151–160. https:
//doi.org/10.2307/2574595

Luce, R. D., & Suppes, P. (2001). Representational measurement theory [Volume 4: Methodology in Ex-
perimental Psychology]. In J. T. Wixted & H. Pashler (Eds.), Stevens’ handbook of experimental
psychology (3rd ed., pp. 1–41, Vol. 4). John Wiley & Sons.

181

https://doi.org/10.1177/001316446602600204
https://doi.org/10.1016/B978-0-08-042415-6.50014-4
https://doi.org/10.1016/B978-0-08-042415-6.50014-4
https://doi.org/10.2307/1390686
https://www.ngv.vic.gov.au/explore/collection/work/3918/
https://www.ngv.vic.gov.au/explore/collection/work/3918/
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
https://doi.org/10.1037/0033-2909.87.3.564
https://github.com/adobe-fonts/source-code-pro
https://github.com/adobe-fonts/source-code-pro
https://doi.org/10.2307/2574595
https://doi.org/10.2307/2574595

References 182

Muenchen, B. (2017). R-bloggers: The tidyverse curse. Retrieved July 18, 2024, from https ://www.r -
bloggers.com/2017/03/the-tidyverse-curse/

Pennant, T. (1784). A tour in wales (Vol. 4). http://hdl.handle.net/10107/4691510

Pierce, R. (2022). Math is fun: What is a function. Retrieved July 9, 2022, from http://www.mathsisfun.
com/sets/function.html

Roberts, F. S. (1985). Applications of the theory of meaningfulness to psychology. Journal of Mathematical
Psychology, 29(3), 311–332. https://doi.org/10.1016/0022-2496(85)90011-2

Robinson, R. E. (1965). Measurement and statistics: Towards a clarification of the theory of “permissible
statistics”. Philosophy of Science, 32(3/4), 229–243. http://www.jstor.org/stable/186516

Senders, V. L. (1958). Measurement and statistics: A basic text emphasizing behavioral science applications.
Oxford University Press.

Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680. https://doi.
org/10.1126/science.103.2684.677

Stevens, S. S. (1951). Mathematics, measurement, and psychophysics. In S. S. Stevens (Ed.), Handbook of
experimental psychology (pp. 1–49). John Wiley & Sons.

Stevens, S. S. (1968). Measurement, statistics, and the schemapiric view. Science, 161(3844), 849–856.
https://doi.org/10.1126/science.161.3844.849

Thomson, A., & Randall-MacIver, D. (1905). Ancient races of the Thebaid: Being an anthropometrical study
of the inhabitants of upper egypt from the earliest prehistoric times to the mohammedan conquest
based upon the examination of over 1,500 crania. Clarendon Press.

Tufte, E. R. (2006). Beautiful evidence. Graphics Press.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460. https://doi.org/10.
1093/mind/LIX.236.433

UNESCO. (2021). UNESCO recommendation on open science. https://doi.org/10.54677/MNMH8546

Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for data science: Import, tidy, transform,
visualize, and model data (Second). O’Reilly Media. https://r4ds.hadley.nz/

Wickham, H., Navarro, D., & Pedersen, T. L. (2024). ggplot2: Elegant graphics for data analysis (3e).
Retrieved July 18, 2024, from https://ggplot2-book.org/

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A.,
Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of
Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

Wilkinson, L. (2005). The grammar of graphics. Springer Science.

Zand Scholten, A., & Borsboom, D. (2009). A reanalysis of Lord’s statistical treatment of football numbers.
Journal of Mathematical Psychology, 53(2), 69–75. https://doi.org/10.1016/j.jmp.2009.01.002

Zeileis, A., & Murrell, P. (2019). HCL-based color palettes in grDevices. Retrieved July 21, 2024, from
https://developer.r-project.org/Blog/public/2019/04/01/hcl-based-color-palettes-in-grdevices/

https://www.r-bloggers.com/2017/03/the-tidyverse-curse/
https://www.r-bloggers.com/2017/03/the-tidyverse-curse/
http://hdl.handle.net/10107/4691510
http://www.mathsisfun.com/sets/function.html
http://www.mathsisfun.com/sets/function.html
https://doi.org/10.1016/0022-2496(85)90011-2
http://www.jstor.org/stable/186516
https://doi.org/10.1126/science.103.2684.677
https://doi.org/10.1126/science.103.2684.677
https://doi.org/10.1126/science.161.3844.849
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.54677/MNMH8546
https://r4ds.hadley.nz/
https://ggplot2-book.org/
https://doi.org/10.21105/joss.01686
https://doi.org/10.1016/j.jmp.2009.01.002
https://developer.r-project.org/Blog/public/2019/04/01/hcl-based-color-palettes-in-grdevices/

	Title
	Preface
	I R Programming - An Initiation
	Summoning Basics: An Introduction to R
	What is R?
	The Genesis of R

	Why a Programming Language?
	Why R?

	Installing and Running R on Your Computer
	Languages and Environments
	Installation
	Upgrading
	Consoles, Scripts, and Running R Code
	Keyboard Shortcuts

	How To Code Using R: The Fundamentals
	Basic Arithmetic
	Understanding Scientific Notation
	Commenting Out Lines
	Creating Objects
	Vectors
	Operators And Comparison Statements
	Functions
	R (Help) Documentation
	Missing Values
	Data Frames

	Packages
	File Extensions
	Directories
	The Working Directory
	Navigating Directories

	Harnessing Sacred Rites of the tidyverse: Plotting Basics
	Worshiping at the alter of the tidyverse
	Plotting with R
	An example data set: msleep

	Adding layers
	Inspecting potential outliers
	Logarithms

	Aesthetics
	Aesthetics by variable

	Displaying trends
	Facets
	Labels
	Saving the plot
	Vector graphics vs. Raster graphics

	Scales
	Position Scales: Modifying the Axis Breaks
	Modifying the Axis Range
	Colour Scales: Modifying Colour Mappings
	Discrete Colour Scales
	Continuous Colour Scales
	Shape Scales
	Legend Titles
	Other Scales

	Modifying Other Non-data Components
	Built-in Themes
	Customizing Themes

	A Final Note

	The Invocation and Metamorphosis of Data
	Spreadsheet Software
	Using an Ethical File Format
	The .CSV Format
	Delimiters
	Reading a CSV File into R
	Reading Other File Types into R

	Tibbles vs. Data Frames
	Displaying Tibbles in the Console

	Wide Data vs. Tidy Data
	Wide Data
	Tidy data

	Laying Pipe (The |> and %>% Operators)
	Data Manipulation Example

	Factors
	Ordering Levels
	Naming Levels

	Adding Error Bars
	Bar Fill Colour
	Putting It All Together

	II Descriptive Statistics - Seeing Without Asking
	Taxonomies of the Profane – Variables, Scales, and Their Unholy Properties
	A Practical Problem
	Descriptive and Inferential Analyses
	Data
	Variables
	Measurement and The Problem of Measurability
	Scales of Measurement
	Nominal Scales
	Ordinal Scales
	Interval Scales
	Ratio Scales
	Implications of Scale Type for Statistical Analysis

	Other Distinctions Between Variables

	Glossary
	<- vs. =
	HCL Colour Palettes
	References

