

The Statistical Grimoire:
Statistics for the Natural Sciences Using R

Version 1.0.8

Dr. Jeffrey M. Pisklak
University of Alberta

The Statistical Grimoire: Statistics for the Natural Sciences Using R by Jeffrey
M. Pisklak is licensed under Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International.

GLOBE https://statistical-grimoire.neocities.org/
Github https://github.com/statistical-grimoire/book
Envelope statistical-grimoire@proton.me

This is LuaHBTeX, Version 1.18.0 (TeX Live 2024)
Generation Date: 2024-08-26

Header Typeface: IM Fell English
Body Typeface: Computer Modern
Code Typeface: Source Code Pro (Hunt, 2024)

Frontispiece image: Waterhouse, J. M. (1886). The Magic Circle [Painting]. The Tate Gallery - London,
England

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://statistical-grimoire.neocities.org/
https://github.com/statistical-grimoire/book

Preface

Since prefaces often go unread, I shall keep this brief. This text was born out of a need to offer my students
a robust, open-access (i.e., free) introduction to R, specifically for those without any programming experience.
Long term it is intended to serve as a practical, open-access manual, guiding complete beginners through both
statistics and statistical programming in a thorough and clear manner. Please consider everything herein a
work in progress.

Foolish Assumptions Made by Your Author:

• Students will read this (yes, I’m an optimist).

• The reader probably hates math, but realizes that math is like physical exercise - necessary, but rarely
enjoyable and often exhausting.

• Beginners with R and programming will start this book at the beginning and move sequentially through
the topics (because skipping ahead would be like casting spells without learning the basics - dangerous
and confusing).

• Readers will not take the sillier things I say in this book too seriously.

v

Contents

Title ii

Preface v

1 R Programming: An Initiation 1
1.1 What the F**k is R? . 1

1.1.1 The Genesis of R . 1
1.2 Why the F**k Should I Use R? . 2
1.3 Installing and Running R on Your Computer . 3

1.3.1 Languages and Environments . 3
1.3.2 Installation . 4
1.3.3 Upgrading . 5
1.3.4 Consoles and Scripts . 5
1.3.5 Keyboard Shortcuts . 6

1.4 How To Code Using R: The Fundamentals . 6
1.4.1 Basic Arithmetic . 7
1.4.2 Understanding Scientific Notation . 9
1.4.3 Commenting Out Lines . 9
1.4.4 Creating Objects . 10
1.4.5 Vectors . 13
1.4.6 Operators And Comparison Statements . 16
1.4.7 Functions . 17
1.4.8 R (Help) Documentation . 20
1.4.9 Missing Values . 20
1.4.10 Data Frames . 22

1.5 Packages . 30
1.6 File Extensions . 31
1.7 Directories . 33

1.7.1 The Working Directory . 33
1.7.2 Navigating Directories . 34

2 Harnessing Sacred Rites of the tidyverse: Plotting Basics 37
2.1 Worshiping at the alter of the tidyverse . 37
2.2 Plotting with R . 38

2.2.1 An example data set: msleep . 40
2.3 Adding layers . 41

2.3.1 Inspecting potential outliers . 42
2.3.2 Logarithms . 43

vii

2.4 Aesthetics . 44
2.4.1 Aesthetics by variable . 46

2.5 Displaying trends . 48
2.6 Facets . 50
2.7 Labels . 52
2.8 Saving the plot . 52

2.8.1 Vector graphics vs. Raster graphics . 53
2.9 Scales . 54

2.9.1 Position Scales: Modifying the Axis Breaks . 55
2.9.2 Modifying the Axis Range . 57
2.9.3 Colour Scales: Modifying Colour Mappings . 58
2.9.4 Discrete Colour Scales . 58
2.9.5 Continuous Colour Scales . 61
2.9.6 Shape Scales . 65
2.9.7 Legend Titles . 65
2.9.8 Other Scales . 66

2.10 Modifying Other Non-data Components . 67
2.10.1 Built-in Themes . 67
2.10.2 Customizing Themes . 69

2.11 A Final Note . 70

3 The Invocation and Metamorphosis of Data 73
3.1 Spreadsheet Software . 73
3.2 Using an Ethical File Format . 74
3.3 The .CSV Format . 74
3.4 Delimiters . 75
3.5 Reading a CSV File into R . 76

3.5.1 Reading Other File Types into R . 77
3.6 Tibbles vs. Data Frames . 78

3.6.1 Displaying Tibbles in the Console . 80
3.7 Wide Data vs. Tidy Data . 82

3.7.1 Wide Data . 82
3.7.2 Tidy data . 84

3.8 Laying Pipe (The |> and %>% Operators) . 84
3.8.1 Data Manipulation Example . 86

3.9 Factors . 92
3.9.1 Factoring a Column . 93
3.9.2 Ordering Levels . 94
3.9.3 Naming Levels . 95

Glossary 97

A <- vs. = 101

B HCL Colour Palettes 103
B.1 Sequential Palettes . 104
B.2 Diverging Palettes . 105
B.3 Qualitative Palettes . 105

References 107

viii

Chapter 1

R Programming: An Initiation

To begin with ...

1.1 What the F**k is R?1

R
is a programming language. A programming language is simply a language humans use to give
instructions to computers. Humans are of course featherless bipedal primates called Homo sapiens.
Computers are machines that follow fixed rules, with no authority to deviate from those rules (Turing,

1950). Contrary to the belief of many, what constitutes a human and what constitutes a computer are not
mutually exclusive. In the past, computation was a biological endeavor, with humans relying on other humans
to carry out the laborious task of performing countless mathematical calculations. These human computers
required no strict programming language, per se, but instead relied on the grunts and scribbles of primates in
the upper tiers of their hierarchy to dictate tasks to them. In the modern day, human computers are a relic of
the past, a product of a bygone era where mathematics and other concepts foreign to modern students, such as
reading and writing, were commonplace within school curricula.

Today the electronic digital computer reigns supreme. This is a machine, largely silicon based, and similar
in many respects to its primate precursor - with the notable exception that it is considerably more logical (some
even go so far as to call these devices “smart” - which perhaps says more about the users than the devices
themselves). It is therefore no longer deemed necessary to subject children to the cruelties associated with a
well rounded education, particularly in the domain of mathematics, where the largest amounts of physical and
psychological turmoil were often inflicted.

1.1.1 The Genesis of R

The name “R” was derived from the first initials of its original two programmers, Robert Gentleman and Ross
Ihaka. The decision to name the language using a single English letter is what we might, charitably, call a
joke on the part of these two programmers, who saw themselves poking fun at R’s parent language, which was
given the unimaginative name of “S”. In the 1970s the S language had undergone its initial development at the
famous Bell Laboratories with the primary aim of enabling and encouraging “GOOD DATA ANALYSIS”- a
goal so fundamental to the ethos of S that the authors, Becker and Chambers (1984), felt they had to emphasize
it using uppercase lettering inside the preface to the language’s inaugural instruction manual (the uppercase

1If you are wondering why the harsh language, it’s because I get it, at face value, learning a programming language to do stats
seems really f**kin’ stupid. But if you can temporarily hold back your gag reflex, I will try my best to convince you otherwise.

1

1. R Programming: An Initiation 2

lettering has been reproduced here for the reader’s benefit). The familial correspondence R has with S is present
even to this day, to such an extent that Becker and Chambers (1984) original manual could probably function
decently well as an introductory manual to R itself.

1.2 Why the F**k Should I Use R?

At this point readers might be wondering why it should ever be necessary to learn a programming language
to conduct statistics and data analysis more generally. These topics are usually considered difficult enough by
many students and educators, what need is there to compound this with a programming language? Why not,
for instance, make use of any one of the many pieces of statistical software that already exist and require no
requisite knowledge of any kind of programming? In other words, why not use software such as SPSS?2

The principal answer to this question has to do with flexibility. It is not the case that there is always
a single correct way to do things. Different sets of data come with their own unique intricacies and problems
which are often not amenable to the “cookie cutter” style of analyses the aforementioned program employs.
Which is not to say that a program like SPSS is incapable of adapting to these scenarios. It usually is, but
this adaptation either requires the user to pay for some additional feature they did not get in their original
purchase or it demands a much higher level of expertise with the software than most users are ever likely to
acquire - expecting them to learn some obscure programming language, specific to that software, that all but a
privileged few actually comprehend. Along these lines, something that non-R users often do not appreciate is
how easy R is to learn. At a superficial glance, R can appear intimidating but it is actually fairly intuitive and
works, more or less, in the manner of a calculator. Most people who learn R find it to be a rewarding experience
that was considerably more user friendly than what its paid counterparts produced (Bro, n.d.). This is thanks
in large part to the extensive infrastructure of helpful online resources that the broader community of R users
have built over the years - which proprietary equivalents have no equal to. Software like SPSS can give an
air of familiarity when a user first encounters them because, superficially, it appears very similar to commonly
used spreadsheet software many individuals will already be acquainted with, such as Microsoft’s Excel. The
user is typically provided with a hefty amount of buttons and menus at the top of the screen followed by a
spreadsheet-style grid beneath it. Unfortunately, that is where the similarities end and new users inevitably find
themselves overwhelmed by the plethora of bewildering options to perform what should be simple enough tasks
(e.g., loading and viewing a data set). The dirty little secret about these programs is that their learning-curve
is considerably steeper than their advertising would have you believe. By contrast there is an inherent logic
to R (the logic of mathematics) that new users can often easily grasp and build off of (even if you don’t like
math). And, if you can use R, you can use these programs (should you be cruelly forced to do so). The inverse,
however, is not true.

An altogether different answer to the question that opened this section, and one that will appeal to the
University students reading this, is simply cost. R is free for the user, with no need to put up with annoying
advertising or pay for additional features. The same can not be said of the other aforementioned software which
are almost always subscription based, requiring the user to consistently renew an expensive license to use the
software. In fact, upon visiting the respective websites for SPSS and other, slightly less talked about, SPSS-
style softwares like Minitab, and STATA, one can see that it is worryingly difficult to find any price listings
whatsoever for these programs - evoking the age old wisdom that, if you have to ask the price, you probably
can’t afford it. But R is not just free in monetary terms, it is also free in philosophical terms. R adopts the
Free Software Foundation’s GNU General Public License and thus adheres to the philosophy of “free software”
(what some might term “open-source”). From the GNU project website (Free Software Foundation, 2024):

2SPSS is popular software for conducting statistics that was originally released in the late 1960s and is an acronym for Statistical
Package for the Social Sciences. At some point it was purchased by IBM and re-branded to mean Steeply Priced Shitty Software.

3 Installing and Running R on Your Computer

A program is free software if the program's users have the four essential freedoms:

• Freedom 0: The freedom to run the program as you wish, for any purpose.

• Freedom 1: The freedom to study how the program works, and change it so it does your computing

as you wish. Access to the source code is a precondition for this.

• Freedom 2: The freedom to redistribute copies so you can help others.

• Freedom 3: The freedom to distribute copies of your modified versions to others. By doing this you

can give the whole community a chance to benefit from your changes. Access to the source code is a

precondition for this.

This philosophy applies not only to the software itself but also to its various file types and help docu-
mentation. For many years, a significant barrier to the dissemination of scientific findings has been the needless
reliance on exclusive file formats by proprietary research tools. Clearly, locking information in this manner is
not in the best interest of scientific progress; rather, it serves to tether researchers to an overpriced, branded
ecosystem. Consequently, we can rightly label the continued adoption of these practices as unscrupulous. In
practical terms, what this means is that, if for no other reason, we should use R just to give the middle finger
to companies that engage in this type of unethical behaviour.

As if you didn’t need any other reasons to start using R immediately, here are some more:

• R Is Not All Gross and Gooey: Unlike programs tied to a graphical user interface (GUI, often called
“gooey”), R is not limited by point-and-click constraints. Its capabilities are as vast as what you and
others can program - and what your computer can handle.

• Advanced Statistical Capabilities: R’s packages make it easy to apply best practices in statistics,
from robust methodologies to cutting-edge analyses.

• Enhanced Data Visualization: With intuitive tools like ggplot2, R easily permits sophisticated and
customized visualizations, helping you communicate findings with clarity and impact.

• Reproducible Research: R is built for reproducible research, aligning with open-science principles.
It allows you to create scripts that are easy to share, review, and rerun, by anyone. This helps ensure
transparency, accuracy, and reliability.

• Integration with Other Tools: R can easily integrate with other software and programming languages,
such as Python, SQL, HTML, LATEX, and even (**eyeroll**) Excel. This makes it a valuable tool for
working in diverse computational environments.

• Growing Demand in the Job Market: R is highly valued in the job market, particularly in data
science, analytics, and research. Mastering R opens up a wealth of career opportunities.

1.3 Installing and Running R on Your Computer

1.3.1 Languages and Environments

R will install and run straightforwardly on Windows and Macintosh operating systems as well as Linux; however,
prior to attempting any install it is important to make a simple distinction first. R is a programming language,
which means it is nothing more than a language you can use to communicate instructions to your computer. To
communicate those instructions, some type of interface is required. This is a basic reality that applies to any

https://unesdoc.unesco.org/ark:/48223/pf0000379949

1. R Programming: An Initiation 4

language. It is quite difficult to communicate with someone if they have no mouth, eyes, or ears to send and
receive communications with. Computers are no different in this respect. Simply “understanding” the language
is not sufficient. For this reason, most operating systems come equipped with a basic way of interfacing with
the user via a command console3 of some kind. On computers using the Windows operating system, this
is referred to as the Command Prompt application, on Macintosh computers this is the Terminal application.
Relying on your operating system’s basic command console as a primary interface is often a cumbersome and
inefficient experience, and definitely not a recommended course of action - though, for what it is worth, Linux
users seem to delight in this sort of thing. The preferred means of communicating R to your computer is
via the use of what, in programming lingo, is commonly termed an “environment” or, more garrulously, an
“integrated development environment (IDE).” This is simply a software application providing the user
with a more elegant visual workspace and feature set to make programming a smoother experience.

The standard installation of R will come with an associated environment for the user - provided they are
working with either a Windows or Macintosh operating system. However, while this environment is preferable
to the operating system’s basic command console, most R users still find it lacking and opt to install a different
environment called RStudio, which has an open-source (free) version for non-commercial use.

1.3.2 Installation

To install R - both the language and the environment simultaneously - simply go to the R Project for Statistical
Computing website:

https://www.r-project.org/

Somewhere on the front-page of this website should be a link labelled “CRAN”. This stands for Compre-
hensive R Archive Network and is a set of servers around the world that distribute R alongside packages
associated with R. The servers are “mirrored”, meaning they all provide the same content. So there is no need
to worry about one server providing incomplete, out-of-date, or unofficial versions of R. Technically speaking,
the server closest to your home location is the one you should opt to download from; however, the topmost link
labeled “0-Cloud” will be sufficient for most users. The install file is only about 80 megabytes large, so unless
you live in the remotest areas of Earth, download speed, and thus choice of server, is probably not a concern.

Once you have chosen a suitable server, you will need select your operating system and choose the
appropriate installation file. If you are using Windows, opt to download the “base” version of R. If you are
using a Macintosh operating system, you will need to select the option relevant to your computer. At the time
of writing this, Macintosh computers have recently begun being manufactured using their own in-house built
processors (i.e., dubbed “Apple silicon”); however, many older Macintosh computers (pre-2023) still contain
Intel-made processors. The install file you select will need to be determined by which type of processor your
computer is using. Macintosh users can determine this by selecting About This Mac via the small little apple
logo in the top left corner of the desktop screen. Machines using Apple silicon, will display a row called “Chip”
and state something akin to “Apple M1”. Machines using Intel processors will display a row reading “Processor”
followed by the make and model of the processor.

Downloading and running the install file should prompt you with a installation wizard that walks you
through the installation process. Unless you are certain you know what you are doing (which means you
probably aren’t reading this), you should just accept the wizard’s default settings.

Upon installation of R, you can then install the aforementioned RStudio environment at

https://posit.co/products/open-source/rstudio/

3A windowed application that allows you to type instructions (a.k.a. “commands”) to your computer.

https://posit.co/
https://www.r-project.org/
https://posit.co/products/open-source/rstudio/

5 Installing and Running R on Your Computer

Installing RStudio is not strictly necessary to work through this book’s content; however, the wealth of
features and customization RStudio offers does makes it a worthwhile program to install and is recommended
for anyone reading this text. For Macintosh users, when you download the install file for R studio there probably
will not be an installation wizard, rather you likely be prompted to “drag” an R studio icon into your applications
folder. Once that is done, R studio is installed.

1.3.3 Upgrading

There are updates made to R about 2-3 times a year and it is generally good practice to upgrade regularly.
There are various methods you can use to update R, but the most straightforward method is to just download
the latest version of R as though you were installing it for the first time and then re-install commonly used
packages.4 If you follow the default setup, you do not need to uninstall the previous version. In fact, it is
usually preferable not to, as RStudio allows you to easily switch between installed versions on your computer.

At the time of writing, R is on version 4.4.1, nicknamed the “Race for Your Life” version. New releases
of R are given nicknames that, inexplicably, are all obscure references to Peanuts (a.k.a. Charlie Brown and
Snoopy) comic strips.

1.3.4 Consoles and Scripts

Upon opening the base R environment you will be shown a pane labelled R Console. Opening RStudio environ-
ment will show a similar pane simply labelled Console alongside a couple of others. The console pane functions
as the command console described earlier (see section 1.3.1). Inside it you will see a “>.” This symbol denotes
the command line’s prompt. In other words, it denotes the space in which you type commands, using R code, to
your computer. The term “code” here is just a shorthand way of referring to “computer code” which is another
way of expressing the fact that we are typing commands using a programming language. The presence of >
also indicates that the computer is awaiting your command.

If you type 1 + 1 on this line and the press “enter/return” on your keyboard, you should see a 2 display
as an output almost instantaneously beneath it. In this case the expression “1+1” is a line of R code. Pressing
enter/return, runs or executes this R code. The “2” is the computer’s resulting output.

Input:

1 1 + 1

Output:

[1] 2

If you close R or RStudio, you will find that any history of this calculation is gone when you re-open the
environment. Consequently, typing commands into the console offers us a quick way to perform simple tasks
that we are not necessarily concerned with preserving. However, in most cases we will be typing R code that
we do want to preserve, run, edit, and add to at later date. This is where the concept of a script becomes
important.

A script is simply a text document on your computer that you can use to type, run, edit, and save your
R code. Using the base R environment, selecting the File menu at the top left corner and choosing New Script,
will open a scripting window. In R Studio the process is File → New File → R Script.

4Packages (also called “libraries”) will be explained later.

1. R Programming: An Initiation 6

Once opened, you can type R code into this new window and save it in the conventional manner of most
word processing applications (i.e., File → Save As). For instance, if you type the following into the script
window ...

1 1 + 1

2 2 + 2

3 3 + 3

You can now place your cursor at a line of your choosing and run that line individually. To do this in
the base R environment you select Edit → Run Line or Selection. In RStudio you select Code → Run Selected
Line(s) or click the “run” icon in the upper right of the script window. If you highlight all the lines of code, or
just a subset of them, you can then run that highlighted section in a similar manner.

1.3.5 Keyboard Shortcuts

It is at this juncture that a handy feature of programming environments be mentioned; specifically, keyboard
shortcuts (also called “hotkeys”). All good programming environments will provide their users with the ability
to do every conceivable task via their keyboard in some way. For instance, if you are using the Windows
operating system, pressing the “control” key simultaneously with the “s” key will save your script file (Ctrl +
S). Learning the shortcuts for frequently used features, such as selecting and running lines of code, can make
the process of writing code considerably more time efficient and effortless. In theory, a good programmer - using
a competently developed coding environment - should never require the use of a mouse. RStudio, in particular,
offers a wide range of keyboard shortcuts that can be customized to user preferences. For instance, selecting
Help → Keyboard Shortcuts Help will display a list of existing shortcuts that users can avail themselves of.
Please note, it is not being suggested that you go out of your way to memorize all of these at once. The simple
act of trying to use them consistently will be sufficient to learn them in an effortless manner. At the outset, it
is to your advantage to merely select a few and attempt to use them consistently while you code. A few of the
most useful ones are listed in Table 1.1.5

Description Windows Macintosh

1. Run current line/section Ctrl + Enter Cmd + Return
2. Clear Console Ctrl + L Ctrl + L
3. Move to the beginning of a line Home Cmd + Left
4. Move to the end of a line End Cmd + Right
5. Move the cursor one word/block at a time Ctrl + Left or Right Option + Left or Right
6. Highlight all Ctrl + A Cmd + A
7. Highlight sections Shift + Up, Down, Left, or Right Shift + Up, Down, Left, or Right
8. Move cursor to script window Ctrl + 1 Ctrl + 1
9. Move cursor to console window Ctrl + 2 Ctrl + 2
10. Type the <- operator Alt + - (minus) Option + - (minus)

Table 1.1: Useful Keyboard Shortcuts

1.4 How To Code Using R: The Fundamentals

With the formalities of installation, console, and scripting window out of the way, we can now start to learn
how to write (i.e. code) using the language called R. Though, it is at this juncture that some advice to novice
programmers be offered. Nothing that will be discussed in this section, or any section of this text concerning R
code, is material you need to go out of your way to memorize. R is a language, and the basic act of trying to

5Shortcuts 3, 4, and 5 can be combined with shortcut 6 to highlight bigger sections of code.

7 How To Code Using R: The Fundamentals

use the language consistently will result in a natural and effortless memorization over time. Along these lines,
there are some basic recommendations novice programmers can follow to expedite this:

• Do not use your computer’s copy and paste functions. Type all code yourself.

• Run all the examples in this textbook and try and produce the same results.

• If you do not know how to do some particular thing, then look up how to do it each time you need to do
it.

• Stay organized - this applies to the code you write and the files you save.

• Pledge to do all your stats from this point forward using R. Immerse yourself in the language.

Everything discussed here is done so for the purpose of acquainting you with the R language so that, when you
see some R code, you are not compelled into some manner of zombiesque torpor. As you move through the
text, you will learn more advanced things and have much of this material repeated and re-explained. Your goal
in this chapter is not to become an R expert, but rather to get an intuitive grasp of R’s underlying syntax and
logic.

1.4.1 Basic Arithmetic

At its core R is really nothing more than a fancy calculator, and we can use it as such. R can be used to add
(+), subtract (−), multiply (×), and divide (÷).

1 1 + 1

2 2 - 2

3 3 * 3

4 4 / 4

[1] 2

[1] 0

[1] 9

[1] 1

Exponents can be incorporated as well by using the ∧ (‘caret’), symbol. For instance, the expression 53

can be written as ...

Box 1.1: Are you using your keyboard properly?

When utilizing the keyboard shortcuts mentioned in section 1.3.5, it is worth remembering that
standard QWERTY-style keyboards are symmetrically designed. Modifier keys like the shift key,
control key, and alt key are located on both the left and right side of the board. This is not by
accident and many people - even those who have grown up with unprecedented access to computers
and the internet - have never learned to appreciate the utility of this layout or use it appropriately.

As an example, to type capital letters you should always depress the shift key on the opposite side
of the keyboard to the letter. So, if you desired to type the capital letter Q, you would depress the
right shift key with your right hand, and type Q with your left hand. A similar logic applies to the
other modifier keys. To use keyboard shortcut #9 in Table 1.1, you would depress the right control
key (with your right hand) and use your left hand to press the 2 key. You should not be trying to
press both keys with a single hand. Such advice might seem obvious but, given the sheer number of
people who contort their wrists and fingers in grotesquely strange and painful ways, it is clearly far
from being so.

1. R Programming: An Initiation 8

1 5^3

[1] 125

R will also follow the order of operations when dealing with more complex expressions. To illustrate,
consider the mathematical expression 8÷ 2(2+2). Some people mistakenly believe that this expression is equal
to 1, some believe it is equal to 4, and others believe that it is improperly written and there is no solution. In
fact, it is equal to 16. As many will no doubt have learned in their primary education, according to order of
operations (BEDMAS6), the order in which you divide and multiply inside the equation is not fixed, sometimes
you divide first and sometimes you multiply first. However, what most people never learn is that the order you
use is not up to you. You must always calculate from left to right when making a choice between multiplication
and division. The same rule applies to addition and subtraction.

1 8/2*(2+2)

[1] 16

If we re-write the equation to be 8÷ (2 + 2)2, you will see a corresponding change in the computer’s output.

1 8/(2+2)*2

[1] 4

R also has the ability to perform Euclidean Division, which many simply know from their primary
education days as division with a remainder. For instance, consider 11 ÷ 2. Conventionally, you would want
and expect an answer of 5.5, and R will produce that.

1 11/2

[1] 5.5

However, if we want to see the result expressed as a quotient and remainder (i.e., if we want to use Euclidean
Division), we could obtain the quotient by typing ...

1 11 %/% 2

[1] 5

To obtain the remainder we type...

1 11 %% 2

[1] 1

Thus, 11 can be split into 2 groups of 5, with 1 left over. More technically, the %% is what is known as
the modulo operator and the remainder value of 1 that results from 11 %% 2 is known as the modulus.

Other, more complex, arithmetic operations are available in the R language; however, most of them will
require the use of specialized lines of code called functions, which are discussed later (see section 1.4.7).

Given that we are on the topic of basic arithmetic, it is perhaps worth considering what happens when
you “break the rules” of basic arithmetic. Suppose we divide a positive and negative value by zero, what will
happen?

1 1/0

2 -1/0

6BEDMAS of course being the famous mnemonic to help memorize the order of operations: Brackets, Exponents, Division,
Multiplication, Addition, and Subtraction. Many non-Canadian readers may be more familiar with the inferior variants of this
mnemonic, PEDMAS and PEMDAS.

9 How To Code Using R: The Fundamentals

[1] Inf

[1] -Inf

You can see that R produces a result of Inf and -Inf which is an abbreviated way of referring to infinity
in the positive and negative directions respectively.7

What happens if you take the square root of a negative number?

1 (-4)^(1/2)

[1] NaN

The abbreviation NaN here stands for “not a number,” and is a fairly sensible output given that the square
root of a negative number does not exist as a real number (consequently, it only exists in your imagination).

Finally, since its use crops up from time to time, it can be handy to know that R comes with the number
π stored as a constant. To use it, you need only type pi .8

1 pi

[1] 3.141593

1.4.2 Understanding Scientific Notation

On occasion values will be either excessively large or excessively small. In such cases R will often display the
values using what is referred to as scientific notation. For instance, dividing the number 2 by 100000 will
result in scientific notation being employed:

1 2 / 100000

[1] 2e-05

Notice the e-05 in the output. This is how you know R is presenting a number using scientific notation.
To interpret this in a conventional manner, imagine there is a decimal point after the 2, like so: 2.0e-05 . Then
just move that decimal point five digits to the left. In other words, 2e-05 is the same as writing 0.00002 .
Mathematically, 2e-05 translates to 2× 10−5

If the output were showing e+5 , then you would move the decimal five digits to the right. For example,
2e+5 is the same as writing 200000 . Notice there are five 0s; this is because, mathematically, 1e+5 means
2× 105

Remember that positive powers move the decimal right (in the positive direction), and negative powers
move the decimal left (in the negative direction).

1.4.3 Commenting Out Lines

In the course of writing R code, there will be occasions where you would like to run a script you have typed
up, but not necessarily run every single line on that script. There might be certain lines that you would, at
least tentatively, like to keep for one reason or another but not necessarily run. You can accomplish this by

7This will also be generated if a number is too large for a computer to cope with. For example, the code .Machine$double.xmax

will produce the largest number your computer can handle. R will technically still let you add values to this number, but the number
won’t change from R’s perspective because the amount you would have to add to alter what is shown is excessively large. However,
if you multiply it by 2, you should get Inf : 2 * .Machine$double.xmax

8If you find π displayed to seven digits inadequate, you may want to talk to a professionally licensed therapist. Alternatively,
you can display more digits by running the code print(pi, digits = 16) . Values exceeding 16 digits will be inaccurate given the
limitations of 64-bit computers, so it is advisable not to go beyond 16 even though a max of 22 are possible. If you want R to always
display all 16 digits, you can change its default behaviour by running options(digits = 16) , though this is not recommended.

1. R Programming: An Initiation 10

“commenting out” your code. If you type a # symbol, any code that follows that symbol and is on the same
line as that symbol will not be run.

1 1 + 1

2 # 2 + 2

3 3 + 3

[1] 2

[1] 6

1 1 + 2 + 3 # + 4 + 5

[1] 6

This process is phrased “commenting out” because using the # is also frequently employed to write short
helpful comments to yourself and other readers about your R script.

1.4.4 Creating Objects

A central feature of R is its ability to call objects in memory. For instance, we can define an object name, x ,
and have that name represent a number by typing a little arrow, <- , and following it with a value such as 1.

1 x <- 1

You will find that running this line of code produces no corresponding output. However, if we now run
x by itself the computer will display an output of 1

1 x

[1] 1

R is technically classified as an object-oriented programming language (an “OOP”). This is because, if
you look into how R actually stores what we have done in memory, the “object” here is the number 1. x is
merely the name we are assigning to that object. However, a lot of R users are under the impression that the
reverse is true - i.e., that we have in some sense created an object called x and stored something inside of it, but
that is not actually the case. x is just a name binded to the object 1, and this object 1 is located somewhere
inside your computer’s memory. Admittedly, unless you are doing some seriously advanced R programming,
this is a distinction that will not matter to 99.3% of R users, but it is important because it means that if you
do something like this . . .

1 x <- 1

2 y <- 1

x and y are technically different objects in the computer’s memory. However, if we did this

1 y <- x

they now represent the same object in memory. Moreover, altering one does not affect the other and just ends
up creating two separate objects in memory. E.g. ...

1 x <- x + 1

2 x

3 y

[1] 2

[1] 1

11 How To Code Using R: The Fundamentals

To assign the names x and y we typed an arrow, <- . Alternatively, we could have assigned the names
using an equal sign (=) instead.

1 y = x + 4

2 y

[1] 6

Both <- and = , in the manner we are using them here, are what are referred to as assignment
operators in that, they are used to perform the operation of assigning a name to an object. For most use
cases, there is no practical difference between the two; except insofar as the arrow can be swapped around to
assign values to objects like so.

1 10 -> z

2 z

[1] 10

The existence of both = and <- as assignment operators raises an obvious question: which is better to
use? This is a question for which there are strong opinions and Appendix A walks through the trivial dispute
for those interested.9

Object Modes

Thus far all of the objects we have created have been numeric objects; though, we can avail ourselves of other
types. For instance, another common object is the character object which gets defined using quotation marks
on each end of the value.

1 x <- "SPAM"

2 x

[1] "SPAM"

Both single or double quotation marks can be used to define a character object. For instance, running ...

1 y <- 'SPAM'

2 y

[1] "SPAM"

works just fine, but if you were to mix and match the two types of quotation marks (e.g., try to run y <- "SPAM'),
you will find that no actual output is produced, and the console just displays the code you tried to run with a
small + appended to it. The + indicates that the line of code is incomplete and more is expected before an
output can be returned. If this happens you need only press the escape key (esc) with your cursor inside the
console window.

A key consideration about character objects, which will probably seem obvious, is that you cannot perform
standard mathematical operations on them.

1 y * 5

Error in y * 5 : non-numeric argument to binary operator

9TL;DR: While code written using = tends to have an intuitive appeal and requires one less key to press, the <- has greater
functionality and is generally preferred by R’s anointed high council (overseers of Tidyverse) for that reason. If you opt to use <- ,
it is worth noting that RStudio contains a keyboard shortcut that offers a more ergonomic means of typing <- by pressing the alt
key followed by a minus (-) sign.

1. R Programming: An Initiation 12

1 2 + "2"

Error in 2 + '2' : non-numeric argument to binary operator

Another type of object is what is known as a logical object. This is an object that contains a value of
TRUE or FALSE and is often referred to as a boolean object.

1 x <- TRUE

2 y <- FALSE

3 x

4 y

[1] TRUE

[1] FALSE

The values TRUE and FALSE must be typed completely in uppercase without quotations for R to
recognize them as a logical object. Alternatively, R does permit a shorthand version of each. Instead of typing
TRUE and FALSE , you can type T and F respectively. Though, for ease of reading, using this shorthand
version is not advised.

Thus far, we have demonstrated three basic categories of object: numeric, character, and logical. R refers
to these various categories as modes,10 and as you progress with R, both in this book and more generally, you
will encounter other object modes.

Naming Objects

Oftentimes we will run into circumstances where other people are required to read, run, and modify the code
we write. Still other times, we may need to look at, and make sense of, code we have written in the past
and largely forgotten. These considerations make it of the utmost importance that all of the code we write
is intelligible to other people and our future selves. Among the best way to achieve this is by naming objects
appropriately. Ideally, the name of an object should be concise and descriptive. Generally, you can name objects
almost anything you like, as long as the name begins with a letter, contains no spaces, avoids special characters
(except underscores _), and does not use any of R’s reserved words such as TRUE , Inf , NaN , function ,
etc.

Given that spaces are not permitted in the naming of objects, programmers have developed certain
conventions to promote readability. One such convention is snake case, which separates lowercase lettered
words with an underscore:

1 snake_case <- 1

Another, referred to as camel case, denotes separate words by capitalizing the first letter of each new word:

1 camelCase <- 2

There is also period case:

1 period.case <- 3

There is random case (Wickham et al., 2023):

10You may sometimes hear these referred to as object “classes” as well. The distinction between modes and classes in R is nuanced,
with considerable overlap between the two terms; though, they are not perfectly equivalent. I have chosen to refer to object modes
because it more consistently categorizes objects as numeric, character, or logical, which I believe is helpful for beginners learning
R.

13 How To Code Using R: The Fundamentals

1 Ra.nD0M_CAs.e <- 4

Finally, there is of course angry case for those moments when you need to communicate your frustration with
coding:

1 ANGRYCASE <- 5

Apart from the last two, R programmers tend to use all of these with seeming abandon. It is worth noting
that different style guides for R have been developed and altered over the years with varying degrees of adoption.
Presently there is no consensus on which style-guide should act in an official capacity for R; however, the most
popular, and widely respected, is the Tidyverse Style Guide11 (https://style.tidyverse.org) which advocates the
strict and concise use of snake_case only.

When it comes to naming objects, all of the rules just laid out only apply to what are referred to as
syntactic names; however, if you choose to be a psychopath, you can ignore all of those rules and create what
are called non-syntactic names by simply enclosing the name within backticks.

1 `420 * 69` <- "PARTY TIME!"

2 `The devil made me do it!` <- "Hail Satan"

1.4.5 Vectors

It is not the case that an object need store only a single value, as we have been doing above. Particularly when
conducting statistical analyses, you are almost always working with variables that contain more than one value
(i.e. multiple observations). In view of this, R objects can store as many values as you require.12 For instance,
if we want x to be equal to the numbers 1 through 5, we need only type:

1 x <- c(1, 2, 3, 4, 5)

2 x

[1] 1 2 3 4 5

The lower case c is short for combine. By combining the numbers 1 through 5 in this way we have
created what is technically known as a vector.13 We can further use this combine function, c() , to combine
vectors with other vectors. In the example below, we create two vectors, x and y , and combine them to
create an object called z .

1 x <- c(1, 2, 3, 4, 5)

2 y <- c(6, 7, 8, 9, 10)

3 z <- c(x, y)

4 z

[1] 1 2 3 4 5 6 7 8 9 10

The concept of a vector is one which will have relevance to people with a fondness of linear and matrix
algebra14 since it amounts to little more than a one-dimensional array/matrix. We can see how R handles
vectors for these purposes by simply performing some mathematical operations on them. For instance, if we
add a single number to our vector, we can see that R straightforwardly adds that number to each element (i.e.
position) in the vector.

11The tidyverse will be explained in the next chapter, just know that all the code written in this book will (do its best) to adhere
to its standards.

12Obviously, this statement is only true given the memory limitations of your computer’s hardware and software.
13More specifically, we are speaking of atomic vectors here, though most people just call them vectors.
14While I assume such people must exist, their existence is about as well-confirmed as that of the Sasquatch.

https://style.tidyverse.org

1. R Programming: An Initiation 14

1 x + 2

[1] 3 4 5 6 7

Correspondingly:

1 x - 2

2 x * 2

3 x / 2

4 x^2

[1] -1 0 1 2 3

[1] 2 4 6 8 10

[1] 0.5 1.0 1.5 2.0 2.5

[1] 1 4 9 16 25

A similarly logical process is seen when we perform mathematical operations on two or more vectors of
the same size. For instance, adding them together results in the first element of one being added to the first
element of the other. The second element of one being added to the second element of the other, and so on.

1 x <- c(1,2,3,4,5)

2 y <- c(6,7,8,9,10)

3

4 x + y

[1] 7 9 11 13 15

However, a curious thing will occur if the vectors have an unequal number of elements greater than 1. Suppose,
as an example, one vector has four elements and another has five and we want to add them together. In the
process of adding the first element with the first element, and the second element with the second, and so on, R
will automatically loop back around to the first element in the shorter vector to complete the calculation; though,
it does this only after giving you a warning. Needless to say, you should not be performing any arithmetic on
vectors of unequal lengths.

1 x <- c(1,2,3,4)

2 y <- c(6,7,8,9,10)

3

4 x + y

Box 1.2: How to Use Your Colon Effectively :

In the previous examples, we used R’s combine function to create a basic set of ascending numbers.
The need to generate regular sequences of integers is a common occurrence in data analyses, so R
provides users with a convenient means to create them using the colon operator (:).

1 x <- 1:5

2 x

[1] 1 2 3 4 5

This can also be used in reverse and with negative values.

1 3 : -5

[1] 3 2 1 0 -1 -2 -3 -4 -5

15 How To Code Using R: The Fundamentals
Warning in x + y: longer object length is not a multiple

of shorter object length

[1] 7 9 11 13 11

Vectors are also not limited to numbers. They can also contain character values and logical values.

1 a <- c(1,2,3)

2 b <- c("BREAD", "SPAM", "BREAD")

3 c <- c(TRUE, FALSE, FALSE)

4

5 a

6 b

7 c

[1] 1 2 3

[1] "BREAD" "SPAM" "BREAD"

[1] TRUE FALSE FALSE

However, you cannot mix and match. For instance, if you have a character string amongst a set of numeric
values, those numeric values will all be converted to character strings as evidenced by the quotation marks in
the output.15

1 d <- c(5, "SPAM", 6, 7, 8)

2 d

[1] "5" "SPAM" "6" "7" "8"

If you have logical values amongst a set of numeric values, those logical values will be transformed such that
TRUE = 1 and FALSE = 0 , making the entire vector numeric.

1 e <- c(666, TRUE, FALSE)

2 e

[1] 666 1 0

In fact if you have an entire vector of logical values you can treat the TRUE and FALSE values as 1s and 0s
respectively. This is a feature of logical vectors that frequently comes in handy.

1 x <- c(100)

2 g <- c(TRUE, TRUE, FALSE, FALSE, TRUE)

3 x + g

[1] 101 101 100 100 101

Similar to how R comes with π (pi) stored as a constant, it also has constants for a few commonly used
character vectors.

1 LETTERS

2 letters

3 month.name

4 month.abb

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M"

[14] "N" "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m"

[14] "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

[1] "January" "February" "March" "April"

15You can also check the vector’s mode by running mode(d)

1. R Programming: An Initiation 16

[5] "May" "June" "July" "August"

[9] "September" "October" "November" "December"

[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep"

[10] "Oct" "Nov" "Dec"

Indexing Vectors

Notice in the previous example’s output that the numbers within brackets indicate the position number of a
element in the vector. For example, in the vector LETTERS , "N" is located in the 14th position. In the vector
month.name , "May" is in the 5th position. Every new line written to the console screen gives the position
number of the first element on the line - meaning that the size of your console screen will effect which position
numbers get displayed (so you might have different values that what is shown above).

It is not by accident that these positions are demarcated using square brackets. Square brackets serve a
special purpose in R. They allow us to index specific values. For instance, if we want to know what the 17th

letter of the English alphabet is, we need only type...

1 LETTERS[17]

[1] "Q"

If we want to list out the first 5 letters we can simply insert a numeric vector...

1 LETTERS[c(1,2,3,4,5)]

[1] "A" "B" "C" "D" "E"

By contrast, if we want to list out all of the letters, except the first five (i.e., exclude the first five), we can
include a minus sign in front of the combine symbol.

1 LETTERS[-c(1,2,3,4,5)]

[1] "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R"

[14] "S" "T" "U" "V" "W" "X" "Y" "Z"

The use of vectors inside the indexing brackets allows us to select any position we want. For instance, if we
wanted to examine the 2nd, 3rd, 5th, 7th, 11th, 13th, 17th, 19th, and 23rd numbers (all prime numbers), we
can create a vector of those values and simply insert it into the index.

1 primes <- c(2, 3, 5, 7, 11, 13, 17, 19, 23)

2 LETTERS[primes]

[1] "B" "C" "E" "G" "K" "M" "Q" "S" "W"

1.4.6 Operators And Comparison Statements

Symbols in R such as <- , + , - , and so on are referred to as operators because they are used to perform
“operations” such as assigning a name to an object, adding numbers together, etc. Table 1.2 shows a list of
some common operators in R that we have seen before and some new ones called relational operators. These
are operators that evaluate a comparison of some kind. For instance, you can evaluate whether one value is
greater than or less than another value.

1 3 > pi

[1] FALSE

17 How To Code Using R: The Fundamentals

In the above example, the statement “three is greater than π”, is a false statement. In the example below, the
statement “three is less than π”, is a true statement.

1 3 < pi

[1] TRUE

In a similar fashion, you can also evaluate whether a value is greater than or equal to some other value. For
example:

1 pi >= pi

[1] TRUE

Alternatively, you might choose to evaluate whether a value is less than OR equal to some other value

1 pi <= 3

[1] FALSE

You can also evaluate whether two values are equivalent or not equivalent, by using the symbols == and !=

respectively.

1 pi == pi #testing if equivalent

2 pi == (22/7)

3 pi != (22/7) #testing if NOT (!) equivalent

[1] TRUE

[1] FALSE

[1] TRUE

Type Operator Description

Assignment
x <- value Assign a value to a name.
value -> x

x <<- value (see Appendix A)
value ->> x

x = value

Arithmetic
x + y Adds values of objects
x - y Subtracts values of objects
x * y Multiplies the value of objects
x / y Divides the value of objects
x^y Raises the value of one object to another

x %% y Returns the quotient of objects
x %/% y Returns the remainder of objects

Relational
x < y Checks if x is less than y
x > y Checks if x is greater than y
x <= y Checks if x is less than or equal to y
x >= y Checks if x is greater than or equal to y
x == y Checks if x is equal to y
x != y Checks if x is not equal to y

Table 1.2: Basic R Operators

1.4.7 Functions

In conventional mathematics a function is a way of relating an input to an output (Pierce, 2022). Typically
this is notated as

f(input) = output (1.1)

1. R Programming: An Initiation 18

When you place something inside the left parentheses, there is a corresponding output. The use of f here to
denote the function is just a formality mathematicians have adopted. A function can be named or symbolized
with anything.

As an example of a function’s use, we could create one that outputs the square root of a number.

f(x) =
√
x (1.2)

In this case, x is just acting as a place holder; thus, swapping the x inside of f() with a real number will give
us a corresponding output by taking the square root of that number. For example, if we insert the number 25
into the function:

f(25) =
√
25

= 5
(1.3)

Functions in R work identically to this. For instance, R has a function for finding the square root of a number,
except instead of naming the function f(x), it names the function sqrt(x) .

1 sqrt(25)

[1] 5

And, rather conveniently, R will also store the output of a function as an object if you ask it to.

1 x <- sqrt(25)

2 x

[1] 5

As you might expect, given its lineage as a tool for data analysis, R has many such functions. Examples of
some of the more common, self-explanatory ones can be seen below. For each we will insert a vector containing
the values one through five.16

1 x <- c(1, 2, 3, 4, 5)

Calculating the sum of all the values:

1 sum(x)

[1] 15

Calculating the product of all the values:

1 prod(x)

[1] 120

Calculating the minimum and maximum of all the values:

1 min(x)

2 max(x)

[1] 1

[1] 5

16It’s perhaps worth pointing out that the small c we use to combine values into a vector is also a function, which is why it is
always followed with parentheses, c()

19 How To Code Using R: The Fundamentals

Calculating the length (i.e., number of elements) of a vector:

1 length(x)

[1] 5

Calculating the mean of all the values:

1 mean(x)

[1] 3

Calculating the median of all the values:

1 median(x)

[1] 3

Functions are not limited to just mathematical processes either. For instance, R has a function to tell us
what an object’s mode is, thus allowing us to determine if the vector consists of numeric, character, or logical
values.17

1 mode(x)

[1] "numeric"

Arguments

The utility of functions in R actually extends far beyond this basic usage because most are easily modified
through the use of arguments. An “argument” is simply a parameter that allows you to customize how a
function operates. A simple example of this is the round() function. This is used to round numbers to a
specified decimal place. For instance, if we have a vector that contains both the number π and the

√
2

1 x <- c(pi, sqrt(2))

2 x

[1] 3.141593 1.414214

We can use the round() function and its “digits” argument to round these to 2 digits.

1 round(x, digits = 2)

[1] 3.14 1.41

Alternatively, we could round to the nearest integer:

1 round(x, digits = 0)

[1] 3 1

The round() function only takes one argument but many functions take multiple arguments. A good
example of this is the sequence function, seq() , which generates regular number sequences. For instance, if
you wanted to generate a sequence from 0 to 100, counting by 2’s, there are three arguments you will need to
set: from , to , and by :

1 seq(from = 0, to = 100, by = 2)

[1] 0 2 4 6 8 10 12 14 16 18 20 22 24

[14] 26 28 30 32 34 36 38 40 42 44 46 48 50

[27] 52 54 56 58 60 62 64 66 68 70 72 74 76

[40] 78 80 82 84 86 88 90 92 94 96 98 100

17Do not confuse this with the mathematical concept of a modal value; i.e., the number that appears most often.

1. R Programming: An Initiation 20

The sequence function is also illustrative of another feature of functions, often they will have mutually
exclusive arguments. Instead of using the by argument, we could have used the length.out argument to
specify how many values we want in our sequence.

1 seq(from = 0, to = 100, length.out = 6)

[1] 0 20 40 60 80 100

To save yourself some effort in typing out functions and their corresponding arguments, you can actually
just provide the values, without the argument name and equal sign, provided you specify the arguments in the
correct order.

1 seq(0, 100, 2)

[1] 0 2 4 6 8 10 12 14 16 18 20 22 24

[14] 26 28 30 32 34 36 38 40 42 44 46 48 50

[27] 52 54 56 58 60 62 64 66 68 70 72 74 76

[40] 78 80 82 84 86 88 90 92 94 96 98 100

To determine the correct ordering of arguments you will need to consult the function’s R documentation.

1.4.8 R (Help) Documentation

There are many more functions built into R, some of which do very complex things; consequently, when reading
R code you will often encounter functions whose process and use seems mysterious. For this reason, it is
often necessary to access R’s help documentation. Each function in the base version of R has corresponding
documentation that describes its purpose, arguments, and has associated references.18 Admittedly, the R
documentation can often be a bit tricky to decipher for novice R users, but it should always be the first starting
point whenever you are confused about how a function should be used or what it is doing. Only after you have
consulted it should you branch out to other resources (e.g., an internet search).

To access the R documentation of any function you need only precede the name of the function with a
question mark and run it.

1 ?sqrt

If you are using RStudio, the documentation will likely appear in the lower right quadrant of RStudio’s display.
If you are using the base R environment, you can expect the documentation to appear in your default web
browser.

1.4.9 Missing Values

A common hurdle in data analysis are missing values. Values can be missing for any number of reasons; perhaps
a participant never showed up for a research session, perhaps an lab animal died, perhaps there was a equipment
malfunction, perhaps someone recorded something incorrectly, or maybe you just ran out of time and money.
The R language denotes missing values using NA , which stands for “not available.” In many instances, numerical
calculations on a NA value will simply result in another NA value.

1 5 + NA

[1] NA

18For common functions in base R, the documented references tend not to be too useful as they usually just reference a guide
on the S programming language, which (if you look up the guide) often does little more than show you how the function is used
without providing any theoretical background.

21 How To Code Using R: The Fundamentals

Intuitively, this behaviour makes a fair amount of sense to most people. We do not know what NA is
or should be, so the expression 5 + NA cannot be evaluated. And R, quite logically, extends this principle to
functions:

1 x <- c(710, 633, 786, NA, 642)

2 mean(x)

[1] NA

However, in this latter case, the logic which seemed so obvious initially seems less so now. Consider that
these values might be observations from an experiment. Many researchers will reflexively ignore the NA and
compute the mean of these values as readily as a rat devours a food pellet, and it is to R’s credit that it actually
prohibits its users from indulging so recklessly.

How missing values should be handled is a matter of great importance and statisticians often disagree on
what the best practice should be in any given case. In a situation like this, most people would simply ignore
the missing element and treat the vector as containing only four values. However, most data sets are not this
simplistic. That NA might be paired with collected observations of other variables. That is a situation where
you might, for the purpose of conducting a certain analysis, require a number to be in that fourth spot. What
do you do then? Do you replace NA with the mean of the four values, do you replace it with the median, or
do you do something else?

There is no one-size-fits-all answer here; however, in those instances where simply ignoring the NA is the
sensible course of action, many base R functions allow you to specify an additional logical argument, na.rm ,
that will remove any NA values prior to calculation. You can see this by simply accessing the R documentation
(e.g., ?mean). By default the argument is set to FALSE and setting na.rm = TRUE will remove the NA

values accordingly.

1 mean(x, na.rm = TRUE)

[1] 692.75

For situations where a function does not have a na.rm argument or equivalent, the function is.na()

can be easily employed. This function evaluates whether each element of an R object is missing or not and
returns a logical (TRUE or FALSE) value. For example:

1 x <- c(710, 633, 786, NA, 642)

2 is.na(x)

[1] FALSE FALSE FALSE TRUE FALSE

Looking at the output, we can see that the fourth value is missing because it has returned a value of
TRUE (i.e., the function has determined that it is a NA value). Combing the behaviour of this function with the
indexing feature of vectors (see section 1.4.5) and a logical operator called the negation operator (denoted
using !), we can easily obtain a version of the vector with missing values excluded.

1 x[!is.na(x)]

[1] 710 633 786 642

With the negation operator, the expression !is.na(x) can be interpreted as asking, “which values of
x are not missing values?” This is easily seen by comparing the is.na() function with and without the
negation.

1 is.na(x)

2 !is.na(x)

1. R Programming: An Initiation 22
[1] FALSE FALSE FALSE TRUE FALSE

[1] TRUE TRUE TRUE FALSE TRUE

Notice that the ! just provides the logical opposite (i.e., negation) of the original function. Thus, putting
all this together, you could write ...

1 mean(x[!is.na(x)])

[1] 692.75

...in lieu of using or not having a na.rm style argument to remove missing values. To novice users of R,
techniques like this may seem cumbersome initially. This is especially the case when you are dealing with so few
values and can immediately see what is and is not missing within the data. For instance, noting that the fourth
value is missing from x , you could simply create a new vector of the form y <- c(710, 633, 786, 642)

and insert that into your functions. However, many (if not most) data sets are too large to “eyeball” and
manually rebuild in this way. Automated solutions like those shown with the negation operator are not only
necessary to save time, but are also less prone to error.

1.4.10 Data Frames

While there are situations where a single vector constitutes the only data that needs to be analyzed, it is
more often the case that you are working with “sets” of data. That is to say, typically your data consists of
observations across a range of different variables. Consequently, for the purposes of organization, it is helpful
to keep all of this data stored as a single object. In R, there are a number of ways you could do this. You could
store data as a table, a list, or a matrix which are all unique classes of objects R recognizes. However, for most
uses cases, a data frame is going to be the preferred method of data storage in R.

In its simplest terms a data frame is simply a spreadsheet, where rows represent observations and columns
represent variables. Consider a hypothetical experiment with two groups, a control and experimental group,
and 10 observations, one of which is missing for some reason. Visually, the data might look like Table 1.3:

Subject Group Value
1 Experimental -0.36
2 Control 0.28
3 Experimental 1.54
4 Control 0.51
5 Experimental -1.28
6 Experimental 1.15
7 Control -2.22
8 Experimental -0.51
9 Control
10 Control -1.04

Table 1.3: Example Data Frame

We can easily recreate this in R using the data.frame() function. Inside the function, we specify our desired
columns as arguments.

1 df <- data.frame(

2 Subject = 1:10,

3 Group = c("Exp", "Cont", "Exp", "Cont", "Exp", "Exp",

4 "Cont", "Exp", "Cont", "Cont"),

5 Value = c(-0.36, 0.28, 1.54, 0.51, -1.28, 1.15,

6 -2.22, -0.51, NA, -1.04)

7)

8

9 df

23 How To Code Using R: The Fundamentals
Subject Group Value

1 1 Exp -0.36

2 2 Cont 0.28

3 3 Exp 1.54

4 4 Cont 0.51

5 5 Exp -1.28

6 6 Exp 1.15

7 7 Cont -2.22

8 8 Exp -0.51

9 9 Cont NA

10 10 Cont -1.04

Alternatively, if you have the variables Subject, Group, and Value already stored as individual vectors, you could
build your data frame in the following way:

1 df <- data.frame(Subject, Group, Value)

2 df

Now, strictly speaking, you would almost never input your data into R in the manner we have done here
(i.e., by manually typing in the values). However, the basics of constructing a data frame is an essential, and
frequently appealed to, piece of knowledge when working with R.

There are two critical features of data frames that separates them from traditional spreadsheets. The first
is that each column needs to consist of a single object mode (e.g., numeric, character, or logical; see 1.4.4). For
instance, in the data frame above, the Subject column consists only of numeric objects, the Group column
only consists of character objects and the Value column, again, only consists of numeric objects. We can see
this by running the following code:

1 sapply(df, FUN = mode)

Subject Group Value

"numeric" "character" "numeric"

In this example, the sapply() function has, quite literally, applied the function mode() to each of the
columns of our data frame, thereby telling us what each column’s mode is. The argument FUN is just short
for “function” and is telling sapply() what function you want to apply to the columns. In this case we are
applying the mode() function.

Knowing the mode of a column is very important because columns behave like vectors insofar as trying
to mix and match different object types within a single column will potentially change that entire column. As
an example, if we had coded ...

1 Value = c("-0.36", 0.28, 1.54, 0.51, -1.28, 1.15, -2.22, -0.51, NA, -1.04)

you will find that every single number in that column automatically becomes a character object even though
only the first of the nine elements was typed as a character object. This is going to be very irritating if you
want to perform mathematical operations on that column and are unaware that all of its elements have been
coerced into character objects (notice that printing the data frame does not show character objects with quotes
like vectors do).

The second critical feature of data frames is that each column must contain the same number of elements
as every other column. In our example, Subject, Group, and Value all contain 10 elements (the missing value is
counted as an element). In most cases, if you try and build a data frame with columns of unequal lengths, R
will produce an error message.

1. R Programming: An Initiation 24

1 df_2 <- data.frame(

2 a = 1:4,

3 b = 1:3

4)

Error in data.frame(a = 1:4, b = 1:3) :

arguments imply differing number of rows: 4, 3

In other cases, if you have an unequal amount of values in your columns and R determines that it can evenly
repeat a sequence, R will automatically recycle that sequence.

1 df_3 <- data.frame(

2 a = 1:4,

3 b = 1:2

4)

5

6 df_3

a b

1 1 1

2 2 2

3 3 1

4 4 2

Notice in the above example that we assigned four values to the a column and two values to the b column and
instead of producing an error, R simply recycled the values in b to fill the empty spots.

Indexing

Similar to how vectors can be indexed using square brackets, data frames can also be indexed. Going back
to our original data frame (df), suppose we wanted to look at the value found in the fifth row of the third
column. This can be easily accomplished in the following way:

1 df[5, 3]

[1] -1.28

Notice, the number on the left side of the comma (5) refers to the row, and the number on the right side
(3) refers to the column. The easy way to remember this is that the numbers in the brackets represent a x and
y coordinate system, with x’s being rows, and y’s being columns.

In the last example we selected a single element of our data frame, but we can select more than one value
and more than one column if need be. For instance, we could isolate rows 1, 3, and 5, from columns 2, and 3
only.

1 df[c(1, 3, 5), c(2:3)]

Group Value

1 Exp -0.36

3 Exp 1.54

5 Exp -1.28

If you wanted to keep all the columns visible while only looking at rows 1, 3 and 5, you need only to leave the
left side of the comma blank.

1 df[c(1, 3, 5),]

25 How To Code Using R: The Fundamentals
Subject Group Value

1 1 Exp -0.36

3 3 Exp 1.54

5 5 Exp -1.28

A similar logic applies to rows:

1 df[, c(2:3)]

Group Value

1 Exp -0.36

2 Cont 0.28

3 Exp 1.54

4 Cont 0.51

5 Exp -1.28

6 Exp 1.15

7 Cont -2.22

8 Exp -0.51

9 Cont NA

10 Cont -1.04

Extracting Columns as Vectors

There will also be many circumstances where you need to work with the values of a single column only. For
instance, if you want to calculate the mean of the third column (Value), you can use one of R’s extraction
operators, the $, to isolate that column. The following code will isolate the Value column and output it as a
vector:

1 df$Value

[1] -0.36 0.28 1.54 0.51 -1.28 1.15 -2.22 -0.51 NA -1.04

You can, therefore, just insert this into the mean() function.

1 mean(df$Value, na.rm = TRUE)

[1] -0.2144444

Alternatively, instead of using the $ operator, you can use doubled square brackets to specify the column
number you want:

1 df[[3]]

[1] -0.36 0.28 1.54 0.51 -1.28 1.15 -2.22 -0.51 NA -1.04

Neither method of extracting a column is intrinsically better than the other. It really boils down to
whether you prefer to reference your columns by names or numbers. The former is often easier to read at the
expense of writing more code, whereas the latter, while harder to discern at a quick glance, requires less writing
and can produce, superficially, a tidier looking script.

If you want to extract a column, but still preserve its classification as a data frame instead of dropping
it to a vector you can include the argument drop = FALSE inside your indexing brackets. This is useful for
situations where you want to preserve the name of the column you have indexed.

1 df[, 3, drop = FALSE]

Value

1 -0.36

2 0.28

3 1.54

1. R Programming: An Initiation 26

4 0.51

5 -1.28

6 1.15

7 -2.22

8 -0.51

9 NA

10 -1.04

Adding and Removing Columns

Adding new columns to a data frame is very simple. Suppose we wanted to create a column named Alpha
containing the first 10 letters of the English alphabet.

1 df$Alpha <- letters[1:10]

2 df

Subject Group Value Alpha

1 1 Exp -0.36 a

2 2 Cont 0.28 b

3 3 Exp 1.54 c

4 4 Cont 0.51 d

5 5 Exp -1.28 e

6 6 Exp 1.15 f

7 7 Cont -2.22 g

8 8 Exp -0.51 h

9 9 Cont NA i

10 10 Cont -1.04 j

If we wanted to create a column named new_val that multiplies all the numbers in the Value column by
100, we can easily do that.

1 df$new_val <- df$Value * 100

2 df

Subject Group Value Alpha new_val

1 1 Exp -0.36 a -36

2 2 Cont 0.28 b 28

3 3 Exp 1.54 c 154

4 4 Cont 0.51 d 51

5 5 Exp -1.28 e -128

6 6 Exp 1.15 f 115

7 7 Cont -2.22 g -222

8 8 Exp -0.51 h -51

9 9 Cont NA i NA

10 10 Cont -1.04 j -104

To remove a column, there are a few options. Assuming you want to remove the Alpha (fourth) column,
you can just set that column equal to a null value, which just means that something is undefined and therefore
does not exist as an object in the R language.

1 df$Alpha <- NULL

2 df

Subject Group Value new_val

1 1 Exp -0.36 -36

2 2 Cont 0.28 28

3 3 Exp 1.54 154

27 How To Code Using R: The Fundamentals

4 4 Cont 0.51 51

5 5 Exp -1.28 -128

6 6 Exp 1.15 115

7 7 Cont -2.22 -222

8 8 Exp -0.51 -51

9 9 Cont NA NA

10 10 Cont -1.04 -104

If you want to remove multiple columns, a quick way is to simply index the columns you do NOT want to
keep, negate them using a minus sign (which means you are now technically indexing the ones you DO want to
keep). You can then override your data frame object, which in our case is (df). To illustrate, we will remove
column’s one and four.

1 df <- df[, -c(1, 4)]

2 df

Group Value

1 Exp -0.36

2 Cont 0.28

3 Exp 1.54

4 Cont 0.51

5 Exp -1.28

6 Exp 1.15

7 Cont -2.22

8 Exp -0.51

9 Cont NA

10 Cont -1.04

Adding and Removing Rows

To add a row to an existing data frame, the conventional strategy is to use the rbind() function. “rbind” is
short for “row bind” and does more or less what it says on the box: it binds (i.e., combines) objects by rows.
For instance, if we create a new dataframe that contains a row (or rows) we want to add, we can then use the
rbind() function to append it to the original dataframe.

1 new_row <- data.frame(

2 Group = "SPAM",

3 Value = 999

4)

5

6 df <- rbind(df, new_row)

7 df

Group Value

1 Exp -0.36

2 Cont 0.28

3 Exp 1.54

4 Cont 0.51

5 Exp -1.28

6 Exp 1.15

7 Cont -2.22

8 Exp -0.51

9 Cont NA

10 Cont -1.04

11 SPAM 999.00

1. R Programming: An Initiation 28

To remove rows (e.g., 9 and 11), you can follow the same basic process that was outlined for removing
columns.

1 df <- df[-c(9, 11),]

2 df

Group Value

1 Exp -0.36

2 Cont 0.28

3 Exp 1.54

4 Cont 0.51

5 Exp -1.28

6 Exp 1.15

7 Cont -2.22

8 Exp -0.51

10 Cont -1.04

Row and Column Names

Notice in the previous example that, by removing row 9 (i.e., the row that contained the NA value), the index
numbers on the leftmost side of the data frame’s output become mislabelled. It counts from 1 to 8, skips 9, and
goes straight to 10. The reason it does this is because those numbers on the left are not actually index values,
as you might reasonably assume. They are actually row names and, when the data frame was initially created,
the rows were literally named 1 through 10.

R users tend to be on the fence as to whether this is a useful feature or not. It does provide a nice visual
confirmation that specific rows have been removed, but it makes future indexing potentially more confusing
since the row named 10 is actually the 9th row. Thus, its often helpful to rename the rows after you have subset
or removed certain values. You can do this using the rownames() function.

1 rownames(df) <- 1:nrow(df)

2 df

Group Value

1 Exp -0.36

2 Cont 0.28

3 Exp 1.54

4 Cont 0.51

5 Exp -1.28

6 Exp 1.15

7 Cont -2.22

8 Exp -0.51

9 Cont -1.04

Note that we used the function nrow() to create the sequence of numbers. This function simply counts
how many rows are in a data frame.

1 nrow(df)

[1] 9

An alternative way of defining the row names would have been to type rownames(df) <- 1:9 ; however,
this is STRONGLY discouraged. The reasons being that 1) if you are working with a large data frame, you
often do not know how many rows there are and 2) if some aspect about your data frame changes in the future
(maybe because you have updated your data set or indexed different values), the 1:9 is no longer going to be

29 How To Code Using R: The Fundamentals

accurate and will produce errors that you may or may not notice, unless you have remembered to change it.
Using the code 1:nrow(df) ensures that your row names will always be correct.

Here we have named our rows using numbers, but you can technically name rows anything you want.

1 rownames(df) <- month.name[1:nrow(df)]

2 df

Group Value

January Exp -0.36

February Cont 0.28

March Exp 1.54

April Cont 0.51

May Exp -1.28

June Exp 1.15

July Cont -2.22

August Exp -0.51

September Cont -1.04

Generally speaking though, this is not something you should be doing. If you wanted to label each row
with a name of the month, you would be better off creating a new column called Month, and keeping the row
names as ascending integers.

Column names can be renamed in a similar fashion using the colnames() function. Though, R’s syntax
does not permit you to name them solely with numeric values, nor are you allowed to include spaces or any
type of special characters other than an underscore.

1 colnames(df) <- c("1st_Col", "2nd_Col")

2 df

1st_Col 2nd_Col

January Exp -0.36

February Cont 0.28

March Exp 1.54

April Cont 0.51

May Exp -1.28

June Exp 1.15

July Cont -2.22

August Exp -0.51

September Cont -1.04

If you do use a number, space, or special character to name your column, it becomes a non-syntactic
name (see section 1.4.4) and backticks become necessary to isolate it.

1 colnames(df) <- c(1, "Col 2")

2 df

1 Col 2

January Exp -0.36

February Cont 0.28

March Exp 1.54

April Cont 0.51

May Exp -1.28

June Exp 1.15

July Cont -2.22

August Exp -0.51

September Cont -1.04

1. R Programming: An Initiation 30

1 df$1

Error: unexpected numeric constant in "df$1"

1 df$Col 2

Error: unexpected numeric constant in "df$Col 2"

1 df$`1`

[1] "Exp" "Cont" "Exp" "Cont" "Exp" "Exp" "Cont" "Exp" "Cont"

1 df$`Col 2`

[1] -0.36 0.28 1.54 0.51 -1.28 1.15 -2.22 -0.51 -1.04

1.5 Packages

As a standalone piece of software, R has an excellent toolbox of functions and operations for most data anal-
ysis/science scenarios; however, it is by no means a complete toolbox. Like any statistical software, there are
scenarios for which it is simply not equipped to handle on its own. But R being a language means it is adaptable
to these scenarios. R users can program their own sets of functions to suit a specific purpose and package
these functions with appropriate documentation and data for other R users to install into their own personal
library of packages.

The packages R users make publicly available are downloaded from online repositories (often called
“repos”). The Comprehensive R Archive Network (CRAN) discussed in section 1.3.2 is one such repository,
another well known one would be GitHub.19 The CRAN repository is easily the most frequented by R users
and is likely to be the only R repository you will ever need. It is special in that the packages it provides are
curated by the The R Project for Statistical Computing.

To install a package from the CRAN repository you simply run the function install.packages(" ")

with the package name inside the quotation marks. As an example, we shall install the “cowsay” package.

1 install.packages("cowsay")

Running the above line of code should prompt a variety of interesting things to occur inside the console
window. This is the package installing into the library of packages stored on your computer. Upon success-
ful completion of the install should be, among other things, a statement reading something to the effect of
package ‘cowsay’ successfully unpacked . What this means is we can now access the various functions
contained within the package, but before we do we should install another package called “praise”.

1 install.packages("praise")

In order to access the functions contained in these packages we need only execute the line library()

with the package name inside the parentheses (quotation marks are not used here).

1 library(cowsay)

2 library(praise)

We can now run the functions say() and praise() in the following way:

1 say(praise())

19This textbook actually has its own GitHub repo: https://github.com/statistical-grimoire/book

https://github.com/statistical-grimoire/book

31 File Extensions

It should be noted that when you close your R environment, you will not have access to these two functions
the next time you open R. However, you can easily regain access to them by re-running the library() functions
above (meaning these lines should be saved in the scripts you write). You do NOT need to reinstall the packages
unless you have updated to a new release of R itself (e.g., you have moved from version 4.4.1 to version 4.5.0).

Each package downloaded from the CRAN repository has documentation associated for both it and the
functions it provides. This documentation can be accessed through the usual route of typing a ? followed by
the package name or function name. Since it is easy to miss, it should be noted that the top left corner of R
documentation specifies what package a function belongs too (see section 2.1 for details on handling conflicting
packages). Insofar as learning about a package is concerned, R Documentation is quite useful, but often times
a better option is to seek out its accompanying .pdf reference manual. A basic internet search is usually the
simplest way to find these for any given package; however, the R project has links to the manuals of all its
packages in the package’s description page. The following web address will take you to a complete list of all the
current CRAN packages available to download and provide you with a link to each package’s description page.

https://cran.r-project.org/web/packages/available_packages_by_name.html

1.6 File Extensions

Most users are familiar with the fact that computers store a multitude of files, each serving different purposes.
We encounter various types of files daily: image files, text files, audio files, and much more. Within these broad
categories lie even more specific file types, each with unique characteristics and uses. For example, image files
can be distinguished into formats such as .gif, .jpg, .png, and .tiff, each catering to different needs in
terms of quality, compression, and usage.

Historically, the way in which users could distinguish different file types was by looking at the file
extension appended to the file’s name. For instance, when looking at an image file, you might see a .png at
the end of the name (e.g., grandma.png) indicating that it is a portable network graphics file. The file extension
dictates which programs can read the file and how they read them.20 This is in contrast to directories which
have no extension (directories will be discussed next in section 1.7).

Unfortunately, most modern operating systems are configured in such a way that they do NOT display
file extensions and, if a (conventional) user needs to identify a file type, they are expected to determine it on
the basis of how the file’s icon looks, which is often unreliable. Microsoft’s Windows operating system began
adopting this practice of hiding extensions around 2015 with Windows 10, and Macintosh computers had been
doing it even longer than that.

The reasons why this change took place are not altogether clear, but the main justification seems to be
that there is an inherent danger in users accidentally deleting or altering an extension when renaming a file,
thereby causing it not to run. At face value this makes a certain amount of sense, but not when you consider the
problems that it creates. In particular, this compromises a computer’s (and by extension a network’s) security
much more. Seeing an unfamiliar file extension and knowing not to click on it (because it is unfamiliar) is one
of the most effective ways of preventing malicious software from attacking your computer. Seeing unfamiliar
file extensions also means the user is less likely to move, delete, or open file types on their system they do not
understand and are integral for the running of their system and its applications. However, with no file extension
displayed there is no obvious way of distinguishing familiar file types from unfamiliar ones.

Hiding extensions also creates the problem of a wolf in sheep’s clothing. Seeing grandma.png.exe on a
system that is configured to hide extensions will display for the user as grandma.png, leading someone (a child

20I apologize if this is obvious to many of you reading this, but experience teaching has taught me that this is no longer common
knowledge and needs to be explained to younger audiences.

https://cran.r-project.org/web/packages/available_packages_by_name.html

1. R Programming: An Initiation 32

perhaps) to believe they are clicking an innocent image of their grandma, when in fact their computer is about
to be devoured by grandma.21

Figure 1.1: From the National Gallery of Victoria, Melbourne: Gustave Doré’s illustration of the “penultimate moment, just before
the triumphant, and satiated, wolf bites off Little Red Riding Hood’s head” in Charles Perrault’s version of the classic fairy tale
(Doré, 1862).

For both security and everyday use, it is important for users to understand that different types of files
exist and that they can easily identify them. The relatively modern practice of hiding file extensions prevents
new users from gaining the essential experience needed to learn this and tends to make programming a more
cumbersome process than it needs to be. The reality is that file extensions are essential pieces of information for
any programmer working with or creating files. Fortunately, operating systems still make it possible to display
extensions and it is highly recommend that readers of this book enable that feature on their respective system:

• Windows 11:

1. In the Windows search bar type “File Explorer Options”
2. Open the File Explorer Options menu.
3. Select the View tab.
4. In the Advanced Settings scroll area, uncheck the box labelled Hide extensions for known file types.

• Macintosh:

1. In a Finder window on your Mac

21Once upon a time users were expected to be the “smart” ones, not their devices.

33 Directories

2. Select Finder at the top of the screen.
3. Open Settings (“Preferences” on older Macs)
4. Select Advanced.
5. Choose select Show all filename extensions.

1.7 Directories

Something often overlooked in introductions to programming languages is the concept of directories. Particu-
larly in the context modern operating systems, directories have fallen into the background of basic computing
knowledge users are expected to have. It is very much something that modern operating systems do not want
their general user base to think or even know about, but they are an essential piece of knowledge for programming
in any language.

A directory is what most people refer to as a file folder on their computer - but this is a misnomer
because the literal image of a folder you see on your desktop is actually just your operating system’s way of
visually representing what is more technically called a directory. Speaking more accurately, a directory is an
address that directs you to a file. Thus, in the same way that people have an address indicating where they
live, files that are stored on your computer also have addresses.

As an example, if you right click the icon of a file on your desktop (control-click on a Mac) and select
“properties” (or “get info” on a Mac), among the various pieces of information it lists is “Location” (or “Where”)
information. For instance, on your computer you might see something similar to these:

• Location: C:\Users\Your Name\Desktop

• Where: Macintosh HD > Users > Your Name > Desktop

This indicates that the file is located within the Desktop directory; which itself is located within the Your

Name directory, which is located within the Users directory; which is located on the hard drive named C or
Macintosh HD.

1.7.1 The Working Directory

Any time R needs to grab or create a file, it needs to grab or create that file somewhere and if you do not tell
R where that somewhere is, it will default to what is known as the working directory.

To see where your current working directory is set to you can just run the function getwd() .

1 getwd()

[1] "C:/Users/Acheron/Documents"

The R output in this case will likely vary between different computers, so you should not expect to see the exact
same output on your computer, but it should be relatively similar.

The way to interpret what we are seeing here is as as a path, or route to get to the directory called
Documents . C:/ represents the hard drive and many computers will have more than one of these, so it is
vital to know which one you are working in. Within the hard drive is the directory called Users . We can
tell that Users is a directory here and not a file because it is bounded by forward slashes, / , and has no file
extension.22 Then we have a subdirectory of that called (on my computer) Acheron . From this subdirectory

22When it comes to directory paths, it is not uncommon to also see them written using backslashes (\), particularly on Windows.
The reasons for this difference in convention boil down to the development history of various types of software. All you need to
know is that R will always use a forward slash /.

1. R Programming: An Initiation 34

Acheron , we have another subdirectory, which is called Documents .

To change working directory you can simply use the function setwd() and specify the full address. As
an example, to change the working directory to the desktop you would type something akin to ...

1 setwd("C:/Users/Acheron/Desktop")

2 getwd() # Run to confirm wd

[1] "C:/Users/Acheron/Desktop"

Generally speaking, the default behaviour of RStudio is to set the working directory as the computer’s
main “Documents” folder. This default behaviour of RStudio can be changed by selecting Tools > Global
Options > General. Alternatively, if you open a script file in R studio by clicking on it with your mouse,
RStudio will automatically set the working directory to the location of that script file.

To illustrate how directories work and how you can easily navigate them, we are going to create a simple
data frame and save it as a spreadsheet file that we can open on our computer.

1 # Create the data frame

2 df <- data.frame(Alphabet = letters)

To save this as a spreadsheet file, we can use the function write.csv() . This function will save our data
frame as something called a .csv file, which is just a universal type of spreadsheet file that any spreadsheet
software can open. To use this function, we just need to give it our data frame and tell it what we want our file
name to be.

1 write.csv(df, file = "letters_1.csv")

Running this function will save a file on our computer called letters_1.csv , but where has it saved
it? As you have hopefully realized, it has saved it to our working directory. Thus, if your working directory is
set to your desktop, you should see the file letters_1.csv located there. You can have R list the files (and
subdirectories) in your working directory by running

1 list.files(path = ".")

[1] letters_1.csv

A word of warning: If your working directory contains many files, this command may produce a long list of
them, with letters_1.csv being just one among many.

Alternatively, we could have saved the file by specifying the complete file path followed by the file name
we want our spreadsheet to have.

1 write.csv(df, file = "C:/Users/Acheron/Desktop/letters_1.csv")

This method, while much more annoying to type, is valuable because it allows us to save the file in any
location we want on our computer. For instance, we could have saved the file the Documents folder, even though
the working directory is set to the Desktop.

1 write.csv(df, file = "C:/Users/Acheron/Documents/letters_2.csv")

1.7.2 Navigating Directories

When it comes to navigating directories, it is quite cumbersome to type the full address of a location on your
computer. Additionally, writing a fixed address into your code makes it difficult for other people run that
same code on their computers since directories vary from computer to computer. Consequently, it is usually

35 Directories

beneficial to specify a path relative to the working directory. To illustrate we are going to use the function
dir.create() .

1 dir.create(path = "./Directory A")

This will create a directory (i.e., visually you will see a folder) called Directory A inside your working direc-
tory. The period (.) in front of the forward slash (/) is a shorthand way of referring to the current working di-
rectory. Thus, you can view the path here as equivalent to typing "C:/Users/Acheron/Desktop/Directory A" .

Next we will nest another new directory, B, inside A, and then nest a directory, C, inside B, such that
the path structure ends up like this:

Directory A

Directory B

Directory C

1 dir.create(path = "./Directory A/Directory B")

2 dir.create(path = "./Directory A/Directory B/Directory C")

When a directory is nested within another directory, we refer to that as a subdirectory.

Now suppose we wanted to save our spreadsheet inside Directory A . One way of doing this would be
to specify the full path, but an easier way is to specify the path relative to our working directory using the
period notation.

1 write.csv(df, file = "./Directory A/letters_3.csv")

Directory A

Directory B

Directory C

letters_3.csv

Moving further down a directory is a straightforward matter, but what if you wanted to move up the file
path? For instance, suppose the working directory is located in Directory C .

1 setwd("./Directory A/Directory B/Directory C")

Further suppose we wanted to save the spreadsheet in Directory B . To do this we would just represent
moving “up” one directory with two periods ("..").

1 write.csv(df, file = "../letters_4.csv")

Directory A

Directory B

Directory C

letters_4.csv

letters_3.csv

If you wanted to save the file two directories up, you just carry forward the logic.

1 write.csv(df, file = "../../letters_5.csv")

Directory A

Directory B

Directory C

letters_4.csv

letters_3.csv

letters_5.csv

1. R Programming: An Initiation 36

And you can use the same logic reset the working directory back to the Desktop .

1 setwd("../../..")

We end up back at the Desktop because ...

• ".." moves us from Directory C up to Directory B .

• "../.." moves us from Directory C up to Directory A .

• "../../.." moves us from Directory C up to the Desktop , which is where Directory A is located
in this case.

It has to be said that, even if you are specifying a locations relative to the working directory, path
addresses can still get quite long, for this reason it is often helpful to store directories as character strings that
are easier to type and combine as needed. If we run ...

1 wd <- getwd()

2 dir_A <- "Directory A"

3 dir_B <- "Directory B"

4 dir_C <- "Directory C"

We can then use the file.path() function to, for instance, to produce a complete path directly to directory
A, B, or C with minimal code that is easier to read.

1 file.path(wd, dir_A, dir_B, dir_C)

"C:/Users/Acheron/Desktop/Directory A/Directory B/Directory C"

So if we wanted to save our spreadsheet in Directory C using the full file path we could run ...

1 name <- file.path(wd, dir_A, dir_B, dir_C, "letters_6.csv")

2 write.csv(df, file = name)

Directory A

Directory B

Directory C

letters_6.csv

letters_4.csv

letters_3.csv

letters_5.csv

Chapter 2

Harnessing Sacred Rites of the tidyverse:

The Basics of Plotting Data with R

T
he history of R can be split into two epochs. There was the time before the tidyverse, a period of
primordial chaos that involved much personal sacrifice and necessary violence. Then there was the
time of the tidyverse. The tidyverse is a set of mystical, yet cohesive, R packages brought forth by

the sorcery of Hadley Wickham and his coven of arcane programmers (Wickham et al., 2019).

Figure 2.1: An engraving depicting
acolytes of the tidyverse burning live
sacrifices, captive within a large wicker
effigy, to appease their deities (Pennant,
1784).

The tidyverse offers much order to the world of R, allowing common
folk to bend and visualize data to their will in ways not previously possible
to all but the most privileged. Though once viewed as complex and heretical
(Muenchen, 2017), through collaboration and shared learning, the dark art
of tidy data has continued to grow and flourish. While some sacrifice is
inevitable (see Figure 2.1), there is no denying that the tidyverse offers an
unparalleled path to power, efficiency, and dark beauty in the seemingly
purposeless world of data analysis. For this reason we must begin our journey
into the basics of data plotting with a brief discussion of it.

2.1 Worshiping at the alter of the tidyverse

As described by its website (https://www.tidyverse.org/), the tidyverse
is an opinionated collection of R packages that share an underlying design
philosophy. Each package can be installed individually, though most find it
easiest to install every package within the scope of the tidyverse all at once.

1 install.packages("tidyverse")

2 library(tidyverse)

── Attaching core tidyverse packages ─────────────────────────────────────── tidyverse 2.0.0 ──

dplyr 1.1.4 readr 2.1.5

forcats 1.0.0 stringr 1.5.1

ggplot2 3.5.1 tibble 3.2.1

lubridate 1.9.3 tidyr 1.3.1

purrr 1.0.2

── Conflicts ─── tidyverse_conflicts() ──

dplyr::filter() masks stats::filter()

37

https://www.tidyverse.org/

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 38

dplyr::lag() masks stats::lag()

Use the conflicted package to force all conflicts to become errors

While the above code installs all the packages, running library(tidyverse) only loads the the nine
“core” packages: ggplot2, dplyr, tidyr, readr, purr, tibble, stringr, forcats. Other tidyverse packages, such as
readxl, will need to be loaded separately using the library() function.

Speaking for the beginner, it will be noticed that when the tidyverse is loaded, not only is there a
confirmation of what packages (and their versions) have been loaded, but there is also a list of “conflicts”
displayed in the output.1 For instance, two functions from the dplyr package, filter() and lag() , have the
same name as pre-existing functions within R and, when you load a package with a conflict like this, precedence
is always given to the most recently loaded package. This means, when you use the filter() function for
example, R is going to use the version belonging to dplyr, not the original version that was a part of base R’s
stats package (which is pre-loaded each time you use R). Though you can still use that original version in the
following manner: package_name::function_name() . For example, stats::filter() .

As a whole, the tidyverse will not solve all your problems, but it will come damn close. Admittedly,
and this is particularly true for beginners, much of what the tidyverse offers will not be needed in your daily
programming rituals, but will come in handy when least expected.

2.2 Plotting with R

A core component of any GOOD DATA ANALYSIS obviously involves visualizing your data. As you progress
through the various topics in this book, specific types of plots and their uses will be discussed in detail; however,
for the time being, it will be helpful to get an intuitive sense of how plotting works with R generally. Thus,
what follows in this section is intended to help you understand the logic of plotting with R. The goal at this
point is not to make you an expert; rather, it is to provide beginners with a base level of knowledge.

By itself, base R comes with a stock set of functions for plotting data. To illustrate we can run the
following code to produce a nice looking histogram ...

1 x <- rnorm(10000)

2 hist(x)

In the case of the above code, the function rnorm() is just generating 10,000 random values.2 The function
hist(x) , is simply plotting those values as a histogram. Running the code should generate an output similar
to what you see below.

1Most packages will not display this information for you quite so nicely as the tidyverse does, so pay attention to any messages
you receive using the library() function.

2The random values are technically coming from a “standard normal” distribution (hence the “norm” in rnorm), but don’t
worry about that for now.

39 Plotting with R

Histogram of x

x
F

re
qu

en
cy

−4 −2 0 2 4

0
10

00
20

00
Figure 2.2: An example of base R’s plotting functions.

R’s base plotting functions offer a convenient means of producing simple quality plots and can be very
efficient when working with univariate data or bivariate data. That is, data which consists of only one
(uni) or two (bi) variables; however, most research concerned with analyzing multivariate data. That is
data with more than two variables. Each additional variable adds ever increasing amounts of complexity and
nuance to your data and, by extension, the plots you use to visualizing those data. The stock set of plotting
functions R offers can accommodate these more complex scenarios; however, that level of accommodation is
heavily dependent on the users proficiency with R. For this reason, this book will adopt the practice of ignoring
R’s base plotting functions, and instead rely on well-known R package called ggplot2 which is among the most
venerated portions of the tidyverse.

The “gg” in ggplot2 stands for “grammar of graphics” and provides users with a logical framework for
the construction of plots within R. The term “grammar” here is likely to conjure up long forgotten traumas
of boring English and Language Arts lessons, but do not fear, the use of the term grammar is really just to
emphasize that ggplot2 is constructed in a way that allows users to build plots of various kinds in a consistent
and efficient manner that is easily tailored to their specific needs. This is in contrast to how plotting in software
works generally, where you are frequently stuck trying to fit a square peg (your data) into a circular hole (the
software’s narrow conception of how data should be presented).

The easiest way to understand how ggplot2 works is to simply dive in and use it. Along the way, we will
also learn a little bit more about R and data manipulation. However, a disclaimer is perhaps useful here:

1
This chapter contains a large variety of functions and strategies for plotting data with ggplot2. If
you are under the impression that you need to memorize all of this, you are approaching this whole
endeavor from the wrong angle. Programming is a skill you develop, not a collection of facts you
remember (though you can foolishly treat it as such). With time and practice, your skill will improve,
and you will naturally remember the various functions and methods employed in R. Eventually, you
will find yourself needing to reference examples less frequently. The goal of this chapter is to help
you experience how ggplot2 and R work. Focus on understanding the logic behind the code rather
than trying to memorize it. Dive in, get your hands dirty, make mistakes, and experiment — that
is how you will truly learn.

The first thing to do will be to ensure that ggplot2 has been installed into our computer’s library of
packages and loaded so we can access its functions. As mentioned in section 2.1, if you have installed and
loaded the tidyverse, this is already done, but if you chose not to do that,3 ggplot2 can be installed and loaded

3Shame on you.

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 40

as a standalone package as well.

1 install.packages("ggplot2")

2 library(ggplot2)

2.2.1 An example data set: msleep

Before we can plot anything, we need something to plot. In addition to its large set of plotting functions, the
ggplot2 package also provides a few illustrative data sets.4 We will work with the msleep data set, which
provides a variety of measurements relevant to the sleep behaviour of a wide range of mammals. To access the
data you need only run the code msleep , which will output a 83 × 11 data frame.5 Given the limited space
available in the console window, the data frame is going to be truncated substantially. Thus, if you would like
to view the entire data set, you can utilize R’s View() function, which will display the data in a separate
spreadsheet style window.

1 msleep # print data to console

2 View(msleep) # view the data in a spreadsheet-style window

name genus vore order conservation sleep_total

1 Cheetah Acinonyx carni Carnivora lc 12.10

2 Owl monkey Aotus omni Primates 17.00

3 Mountain beaver Aplodontia herbi Rodentia nt 14.40

4 Greater short-tailed shrew Blarina omni Soricomorpha lc 14.90

5 Cow Bos herbi Artiodactyla domesticated 4.00

6 Three-toed sloth Bradypus herbi Pilosa 14.40

7 Northern fur seal Callorhinus carni Carnivora vu 8.70

8 Vesper mouse Calomys Rodentia 7.00

9 Dog Canis carni Carnivora domesticated 10.10

10 Roe deer Capreolus herbi Artiodactyla lc 3.00

Table 2.1: First 10 rows and 6 columns of the msleep data

Table 2.1 shows the first 10 rows and 6 columns of msleep data. Looking more closely at the data, we can
see a variety of variables (the column names) that are, for the most part, self explanatory. In this case, the
column names represent distinct variables that have been measured and, particularly with larger data frames
that cannot be adequately printed to the console, it is often useful to have R list out the name of each column.
We can do this quite easily using the names() function.

1 names(msleep)

[1] "name" "genus" "vore"

[4] "order" "conservation" "sleep_total"

[7] "sleep_rem" "sleep_cycle" "awake"

[10] "brainwt" "bodywt"

Now, while the names of each column are self-explanatory, the elements of each column are perhaps less
so. For instance, in the $sleep_total column, are we looking at values in minutes, hours, or days? In the
$conservation column we can see a number of abbreviations such as lc , nt , vu , and so on. What do we
make of those? A good starting point for answering these questions is to check the documentation associated
with the data set, which all CRAN packages are required to include. This can be accessed in the usual way
with a ?

4Base R comes with a nice collection of data sets as well. To obtain a list you need only run the function data() .
To obtain the list of data sets for ggplot2 you need only include the package name as an argument in this function:

data(package = "ggplot2")

5Technically we are looking at a “tibble”, which is the “tidyverse’s” own take on a data frame. For our present purposes though,
this is a distinction without a difference.

41 Adding layers

1 ?msleep

Inspecting the documentation, we can see that $sleep_total is given in hours and that the column $conservation

indicates “the conservation status of the animal.” Admittedly, concerning this latter column, that does not tell
us too much, but it does at least give us a starting point for understanding what those values might represent.
In all likelihood, we are seeing abbreviations for the IUCN’s (International Union for Conservation of Nature)
species ranking.

• lc = Least Concern
• nt = Near Threatened
• vu = Vulnerable
• en = Endangered
• cd = Conservation Dependent

Using a scatter plot as a basic starting point, we will plot the relationship between the variables body
weight (kg) and sleep total (hours). These are represented by the columns $bodywt and $sleep_total

respectively.

2.3 Adding layers

ggplot2 constructs plots by adding visual layers on top of one another. The first layer is the grid upon which
our scatter plot’s points will appear. To generate this first layer we can simply type ...

1 ggplot(data = msleep, aes(x = bodywt, y = sleep_total))

5

10

15

20

0 2000 4000 6000
bodywt

sl
ee

p_
to

ta
l

Looking at the ggplot() function we typed, we can see that the argument data tells ggplot2 where the data
is coming from - in this case it is coming from the msleep data frame. The x and y arguments are telling
ggplot2 what variables/columns should be mapped to the x and y axis respectively. Notice that, not only has
ggplot2 labelled the axis accordingly, but it has also given them scales that correspond to size of the values
found in both columns.

Next we will, quite literally, add (+) a layer of points on top of this by typing + geom_point() . The
term “geom” here is just an abbreviation for “geometric object”, and points are one of many different types of
geometric object ggplot2 recognizes.

1 ggplot(data = msleep, aes(x = bodywt, y = sleep_total)) +

2 geom_point()

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 42

5

10

15

20

0 2000 4000 6000
bodywt

sl
ee

p_
to

ta
l

At this juncture, it is worth taking a moment to talk about how this code we have written has been organized.
Here we placed geom_point() on a new line and indented it. This was not something we strictly had to do.
We could have put everything on a single line like so ...

1 ggplot(data = msleep, aes(x = bodywt, y = sleep_total)) + geom_point()

But, particularly as we add more customization to the plot, this style of writing becomes hard to read. The
(tidyverse’s) R style guide recommends that no line of code exceed 80 characters, which is the advice most
of the R community adheres to. In fact, Rstudio can be configured to display a margin representing the 80
character limit: (Tools → Global Options → Code → Display). To ensure that you do not exceed limit with
larger blocks of code, it is worth remembering that you can always move portions of code to a new line after a
comma, operator, or unclosed parentheses. The indentation we used is purely to guide the eye in recognizing
that geom_point() belongs to a larger block of code.6

2.3.1 Inspecting potential outliers

At present, the plot does not look like much. There are numerous points scattered between 0 and 1000, and a
couple of very extreme points beyond which are skewing the x-axis scale and making the majority of the data
difficult to visualize. Given how rare and extreme these two values appear, we should inspect them to ensure
that they are not errors within the data set (i.e., ensure that there is not a 2500 kg mouse, bird, or other such
abomination in our data set). To accomplish this, most people will instinctively try to scan the data frame’s 83
rows one by one with their eyes. Obviously, that strategy will be slow, inefficient, and highly prone to error. A
better strategy is to have R isolate these values using the filter() function which is part of the tidyverse’s
dplyr package.7 We simply give the function our data frame, and then specify a logical rule to subset by. In
this case we will tell the function to show us all the rows that have a body weight greater than 2000.

1 filter(msleep, bodywt > 2000)

A tibble: 2 × 11

name genus vore order conservation sleep_total

<chr> <chr> <chr> <chr> <chr> <dbl>

1 Asian elephant Elephas herbi Proboscidea en 3.9

2 African elephant Loxodonta herbi Proboscidea vu 3.3

5 more variables: sleep_rem <dbl>, sleep_cycle <dbl>, awake <dbl>,

brainwt <dbl>, bodywt <dbl>

6While the R programming language allows users to indent code with reckless abandon, some programming languages, such as
Python, require it to be used in very specific ways.

7Base R has a (more or less) equivalent function subset() that we could use as well. There are reasons for preferring filter() ,
but in this context there is no advantage to using either.

https://style.tidyverse.org/syntax.html#long-lines

43 Adding layers

A quick glance at the output reveals that these two points represent the Asian and African elephant
respectively. Thus, while these values are quite extreme and do not seem to be terribly representative of the
data as a whole, they are not mistakes and therefore should remain in the data set. However, this begs the
question, how do we visualize this data adequately with such odd scaling?

2.3.2 Logarithms

A common strategy in cases like this where larger values tend to become more and more extreme (i.e., ex-
hibit some kind of exponential growth) is to plot the logarithm of the values. As a refresher of high school
mathematics, logarithms are essentially exponents in reverse. For example:

103 = 10× 10× 10 = 1000

A base-10 logarithm simply undoes this process by stating how many 10s it takes to create 1000.

log10(1000) = 3

A base-2 logarithm asks: how many 2s are required to create 1000?

log2(1000) ≈ 9.966

Thus, 29.966 ≈ 1000.

A natural logarithm uses a base denoted as e (Euler’s Number), which is approximately 2.71828.

loge(1000) ≈ 6.908

Base-10, base-2, and natural logarithms represent the most widely used types of logarithms,8 but you can
technically use any base you desire. As seen below, the use of logarithms in R is very straightforward.

1 log10(1000) # Base-10 function

2 log2(1000) # Base-2 function

3 log(1000) # Natural log

4 log(1000, base = 666) # Pick your own base

[1] 3

[1] 9.965784

[1] 6.907755

[1] 1.062521

A base-10 logarithm is generally considered the most intuitive so we will use that. There are various
ways to incorporate a logarithmic scale on our plot’s axis, but perhaps the safest way is to simply add a new
column of log10 values to our dataframe and plot that instead of the standard $bodywt column.

1 # Add new column of log bodywt values.

2 msleep$bodywt_log10 <- log10(msleep$bodywt)

3

4 # Re-plot the data

5 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

6 geom_point()

8For clarity and consistency the natural logarithm of 1000 has been written loge(1000), but it is common practice to identify
natural logarithms using “ln”. E.g., ln (1000) ≈ 6.908.

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 44

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

Box 2.1: An alternative way to scale

In the previous example, the logarithm was applied by creating a new column of x-axis values and
plotting that. However, this means that, if you want to interpret the numbers in their original units,
you need to calculate 10x, which can be annoying.

An alternative strategy would be to keep the $bodywt column as is and just scale the plot’s axis
itself to increment logarithmically which ggplot2 will do straightforwardly.

1 ggplot(msleep, aes(x = bodywt, y = sleep_total)) +

2 geom_point() +

3 scale_x_continuous(trans = "log10")

5

10

15

20

1e−01 1e+01 1e+03
bodywt

sl
ee

p_
to

ta
l

The advantage of this method is you can look at a point’s value on the x-axis and know immediately
that it corresponds to a weight of x kg. The drawback is you may end up with excessively small or
large values on the axis, hence the scientific notation you see in the plot.

2.4 Aesthetics

Geometric objects in ggplot2, like the point geom, all have various traits, like their size, shape, and colour
that can be customized. In the language of ggplot2, these are referred to as aesthetics. For example, we can
customize the points in the following way ...

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3,

3 shape = 4,

4 colour = "blue",

5 stroke = 1.5)

https://www.mathsisfun.com/numbers/scientific-notation.html

45 Aesthetics

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

With a bit of experimentation, it should be apparent how the arguments size and stroke work in
the above example; however, the shape and colour arguments are slightly less intuitive.9 R comes with a
variety of point shapes (technically called “plotting characters” or “pch” symbols for short) that are denoted
by numbers. The various possibilities are depicted in Figure 2.3. In this case, number 4 is an ×. Notably, the
last five plotting characters (21 through 25) incorporate both a colour aesthetic for their edges and a fill

aesthetic. All the other symbols only require a colour aesthetic to be specified.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3,

4 shape = 25,

5 colour = "black",

6 stroke = 1.5,

7 fill = "red"

8)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

The plotting characters shown in Figure 2.3 are just a few of the options available. For instance, by using values
ranging between 32 and 127, you can display a variety of ASCII characters. Additionally, you can specify a
particular character instead of providing a numeric value, e.g., shape = "&" .

In the above examples we specified a desired colour by typing the name of a primary colour, but we are not
limited to just using primary colours. R comes with a built in set of 657 differently named colours. You can
obtain the full list of colour names by running colors() . R also has a built-in demo of these colours you can
run to get a visual representation of each. Simply run the command demo("colors") .

9If you accidentally omit the “u” when typing “colour,” ggplot2 will still understand what you mean, even though it isn’t correct
English.

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 46

0 1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 2.3: R Plotting Characters

Alternatively, instead of typing a colour name, you can use a hexadecimal value (also referred to as a
“hex code” or “hex value”) that represents a specific colour. For example, the hex value "#FFC0CB" represents
the colour pink. Hexadecimal values offer the user a lot of nuance when it comes to colour selection and, in
most cases, the simplest way of finding an appropriate hex value is to consult one of the many websites devoted
to colour codes and colour theory (i.e., do an internet search). However, if you would like to understand the
theory behind hex codes and why they are used, see Box 2.2.

2.4.1 Aesthetics by variable

In the above examples, the aesthetic changes we made to the plots affected all of the points. In the language
of ggplot2, we would say that the aesthetics were mapped to all the points. However, it is often necessary to
visually break up the points according to one of the other variables in your data. For instance, we could colour
the points in our plot according to the categories in the data’s $vore column.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore))

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

NA

Notice that the plot’s legend shows an “NA” category. This is because there are NA values found within the
$vore column (run msleep$vore to see them). Thus, the legend’s “NA” category represents values that
we have body weight and sleep total information for, but we do not know what those animals diet consists of

47 Aesthetics

Box 2.2: Hexadecimal Notation for Colours

Hexadecimal values are simply numbers that use a base-16 counting method. In other words, in the
world of hexadecimals, there are 16 different numbers that are used to count with, instead of the
typical 10 numbers (0:9), you were probably raised to use. These are

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

Because of their larger base, a single hexadecimal digit can store more information than a conventional
base-10 digit can. For instance, if a computer stores various gradations of the colour red using just
two digits, that only allows for 100 (10 × 10) different reds. Using hexadecimals you can have 256
(16 × 16) reds, with just two digits. Thus, if a colour is some combination of red, green, and blue,
and each is stored using two hexadecimal digits that gives you 2563 = 16, 777, 216 colours as opposed
to the meagre 1003 = 1, 000, 000 you would have using the inferior base-10 counting method.

To use hexadecimals to represent colour, two digits are assigned to red (RR), green (GG) and blue
(BB), in that order like so "#RRGGBB" . Smaller values are darker, and larger values are brighter.
Consequently, black is represented as "#000000" and white is represented as "#FFFFFF" . Thus,
if you want the “purest” red, you would input "#FF0000" , the purest green would be "#00FF00" ,
and the purest blue would be "#0000FF" .

and therefore cannot categorize them properly.10 So instead of referring to this category as “NA”, we could
refer to these as “unknown.” All we need to do is change the NA values in the data frame’s $vore column
to character values that read "unknown" . This can be done simply by using the ifelse() function, which
tests a statement you write. If that statement is true, it produces a value you have specified, if it false, then it
produces an alternative value you have specified. In other words, it works like this:

ifelse(test, true result, false result) .

In this case, we want to test if the value in each row is an NA value or not. Recall that the function is.na()

tells us whether the value of a vector is an NA value or not.

1 is.na(msleep$vore)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[8] TRUE FALSE FALSE FALSE FALSE FALSE FALSE

[15] ...

Thus, we can use that as the “test” in the ifelse() function.

1 ifelse(is.na(msleep$vore), "unknown", msleep$vore)

[1] "carni" "omni" "herbi" "omni" "herbi" "herbi" "carni"

[8] "unknown" "carni" "herbi" "herbi" "herbi" "omni" "herbi"

[15] "omni" "omni" "omni" "carni" "herbi" "omni" "herbi"

[22] "insecti" "herbi" "herbi" "omni" "omni" "herbi" "carni"

[29] "omni" "herbi" "carni" "carni" "herbi" "omni" "herbi"

[36] "herbi" "carni" "omni" "herbi" "herbi" "herbi" "herbi"

[43] "insecti" "herbi" "carni" "herbi" "carni" "herbi" "herbi"

[50] "omni" "carni" "carni" "carni" "omni" "unknown" "omni"

[57] "unknown" "unknown" "carni" "carni" "herbi" "insecti" "unknown"

10To see the full list of animals who have a missing $vore value, you can run filter(msleep, is.na(vore)) . This will show

all the rows for which is.na(vore) evaluates to TRUE .

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 48

[64] "herbi" "omni" "omni" "insecti" "herbi" "unknown" "herbi"

[71] "herbi" "herbi" "unknown" "omni" "insecti" "herbi" "herbi"

[78] "omni" "omni" "carni" "carni" "carni" "carni"

When you run the above code, the ifelse() function scans each row of the $vore column and evaluates
whether is.na(msleep$vore) is TRUE . If it is true, it replaces the existing NA value with "unknown" .
However, if it FALSE , it leaves it as the original value (this is why we wrote msleep$vore after the second
comma). The end result is a vector of values that we can use to replace the existing $vore column with.

1 msleep$vore <- ifelse(is.na(msleep$vore), "unknown", msleep$vore)

Now, when we re-plot the graph, we get something much more sensible

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore))

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

When plotting, it is usually inadvisable to only adjust the colour of your points because a sizeable
portion of the population has some form of colour vision deficiency (a.k.a., colour blindness). And while there
are “colourblind friendly” palettes we can use, there is no universal palette that works optimally for all cases of
colour deficiency. Consequently, the best practice is to have each category be represented by a distinct shape.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore))

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

2.5 Displaying trends

Notice that the data points appear to trend downward as you move from left to right on the x-axis. In other
words, as body weight increases, you tend to see decreases in sleep total. By simply adding a second geom,
called geom_smooth() , we can use a line of best fit to represent (i.e., model) this trend.

49 Displaying trends

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore)) +

3 geom_smooth()

0

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

The shaded grey area represents a statistic called the standard error and the line was drawn using a fancy
smoothing method called local polynomial regression fitting, but we can use a more common regression line as
well and modify various aspects of it just like we had done earlier using geom_point() .

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore)) +

3 geom_smooth(

4 method = "lm", se = FALSE,

5 linetype = 2,

6 linewidth = 0.5,

7 colour = "black"

8)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

By setting method = "lm" on line 4, we are instructing ggplot2 to draw a linear model. While the concepts
of standard error, polynomial regression, and linear models are more advanced topics, their value in displaying
trends should be clear enough, even if the underlying mathematics is not yet fully understood.

It is at this point where the versatility of the ggplot2 really begins to shine. For instance, if we wanted
to create a separate regression line for each category of $vore we can accomplish that by once again making
use of the aes() function and “grouping” by $vore .

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore)) +

3 geom_smooth(

4 method = "lm",

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 50

5 se = FALSE,

6 colour = "black",

7 linewidth = 0.5,

8 aes(group = vore)

9)

0

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

At present it is not clear which line applies to which category, but we could also have each regression line
correspond to the colour mapped to $vore , and (in consideration of colour blindness) give each line a separate
linetype .

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore)) +

3 geom_smooth(

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5,

7 aes(colour = vore, linetype = vore)

8)

0

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

2.6 Facets

As interesting as our plot looks, it is becoming rather cluttered and difficult to visually parse. In situations like
this, it is often helpful to split the plot up into separate facets (i.e., give each category its own graph). ggplot2
makes this very easy with its facet_wrap() function.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, aes(colour = vore, shape = vore)) +

3 geom_smooth(

51 Facets

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5,

7 aes(colour = vore)

8) +

9 facet_wrap(~ vore)

omni unknown

carni herbi insecti

−2 0 2 4 −2 0 2 4

−2 0 2 4
0

5

10

15

20

0

5

10

15

20

bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

You can interpret the small formula we wrote (~vore) as meaning “plot as a function of vore.”

Notice that now, the colour and shape aesthetics are providing redundant information with the facet
labels. As a general rule, you want to avoid redundancy in your plots because additional visual elements might
bias the viewer’s eye in unpredictable ways. We can easily fix this by removing some of the aesthetics we added
earlier, and we can also adjust the facets so that they are all on a single row by adding the argument, nrow = 1

to our facet_wrap() function.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3) +

3 geom_smooth(method = "lm", se = FALSE, linewidth = 0.5) +

4 facet_wrap(~ vore, nrow = 1)

carni herbi insecti omni unknown

−2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4
0

5

10

15

20

bodywt_log10

sl
ee

p_
to

ta
l

The default behaviour of facet_wrap() preserves the x and y axis scales across the facets, making
them easy to compare. In most cases, this is a feature you do not want to override but it can be done (see the
R documentation: ?facet_wrap).

Particularly for beginners with R, it is difficult to impress how useful ggplot2 is here. Using base R

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 52

plotting functions to produce a comparable graph would be a considerably more complex process and require a
heftier amount of code to be written, whereas ggplot does it all for us in four short lines.

To finish up the plot, we should adjust some of the labelling, save it, and then take a look at some other
more advanced features of ggplot2.

2.7 Labels

To adjust the x and y axis titles we can simply use the functions xlab() and ylab() .

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3) +

3 geom_smooth(

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5

7) +

8 facet_wrap(~vore, nrow = 1) +

9 xlab("Log10(Body Weight kg)") +

10 ylab("Sleep Total (hrs)")

carni herbi insecti omni unknown

−2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4 −2 0 2 4
0

5

10

15

20

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

2.8 Saving the plot

Users of R studio will notice that in the Plots pane there is a button that can be used to “export” your plot.
However, it is usually more efficient and useful to save the plot via written code, and there are different methods
you could use to go about this. Since we are using ggplot2 to create our graphs, the optimal strategy is to use
the ggsave() function, which will save the last generated plot unless you tell it otherwise.

1 ggsave("msleep_plot.png", dpi = 300, units = "cm", width = 20, height = 7)

Running this code as is will save the plot to your working directory (see section 1.7 for more info about
directories and saving files). Within the function, we have chosen to name our image file "msleep_plot.png" .
The file extension you specify at the end of the file name here will dictate what type of image the plot is saved
as. In this case, it will save as a .PNG (Portable Network Graphics) image file, which is a very standard type of
image that most people and software are used to handling, though you could save it as other common formats as
well (e.g., .JPG, .GIF, .TIFF, etc.). The argument dpi stands for “dots per inch” and specifies the resolution
of the image. For publication quality plots it is generally recommended that you have a minimum resolution
of 300 dpi. Anything less than that will likely produce very noticeable artifacting or fuzziness, particularly if
the image has been resized or magnified. The last three arguments units , width and height allow you

53 Saving the plot

to specify the dimensions of your plot and should be relatively self-explanatory. If you wanted to, for instance,
give the dimensions of your plot in millimeters you would specify "mm" , inches would be "in" , and so on.

2.8.1 Vector graphics vs. Raster graphics

The above code saved the plot as a .PNG which is a type of “raster” image, meaning it is an image composed of
tiny coloured squares called pixels. The more pixels an image has, the more detail it can provide (i.e., the higher
its resolution). The problem with using raster images though, is that resizing, stretching, and magnification has
deleterious effects on their quality. For instance, the image below shows a small section of our 300 dpi graph
magnified substantially.

Figure 2.4: Artificating present on our 300 dpi raster image when magnified.

A close inspection reveals jaggedness on the blue line and general blurriness around the rest of the
image’s elements. In academic publications, manuscripts, and presentations, this is something you want to
avoid because, while these problems may not be immediately noticeable at first glance, they can impact a
person’s sensation of the image and, by extension, their opinion of its creator. Moreover, imperfections like
these can be exacerbated in the printing and publishing process.

Now you might think that a simple remedy would be to increase the dpi to a much higher value, but
this is generally a strategy you want to avoid. There tends to be diminishing returns with resolution increases
and anything beyond 300 dpi is not going to do much for you apart from ballooning the image’s file size. The
optimal strategy is to make use of something called a vector graphic.

Vector graphics are not really images in the traditional sense; rather, they are more akin to a set of
instructions your computer uses to draw the image. Consequently, a vector-based image can be resized and
magnified as much as you would like and it will never lose its quality. The drawback to vector graphics is
that they do not work too well for highly detailed photographs (e.g., a forested landscape) and they are not
always recognized by software. For instance, the most common types of vector you will encounter are .PDF,
.SVG, and .EPS. Recent versions of Microsoft Word and PowerPoint will happily accommodate .SVG files,
but if you are wanting to use a .PDF or .EPS, you will be out of luck. Correspondingly, Google Docs and
Google Slides will not accept any type of vector graphic, which is doubly frustrating because these apps will
also downscale the resolution of raster graphics you import. Libre Office’s Writer and Impress applications will
accept a .PDF image, but it converts it to a lower resolution raster graphic when it is imported. Despite these
types of compatibility limitations, if you are able to use vector graphics then you should, because they will give
your work a level polish other people are not likely to have.

To save a file as a vector graphic, the process is the same as before, we just need to modify the file
extension and remove the dpi argument (because dpi has no meaning for vector graphics).

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 54

1 ggsave("msleep_plot.svg", units = "cm", width = 20, height = 7)

The above code saved the image as a .SVG (Scalable Vector Graphic) file. This is a commonly used
image file in web design, meaning it will, by default, be most likely displayed within a web-browser when you
open it.

Figure 2.5: Magnification of a vector graphic.

2.9 Scales

A core concept in the “grammar” of ggplot2 is that of scales. Scales control how data is mapped to different
aesthetics. For instance, there are scales for position, colour, size, shape, linetype, and so on. When you map
an aesthetic to a variable like we did above where we had mapped both colour and shape to the $vore column
- e.g.,

1 ...

2 geom_point(aes(colour = vore, shape = vore))

3 ...

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

ggplot2 automatically chose which colours and shapes got applied to each category, but you can use functions
to override these automatic mappings.

The function you use to make these overrides is going to be dictated by the aesthetic you want to modify.
For instance, to adjust the colour (or edge colour) of a point you could use scale_colour_discrete()

function or the scale_colour_continuous() function. If you wanted to adjust the shapes of the points, you
could use scale_shape_discrete() function. If you wanted to adjust the fill colour of something (e.g., the
fill colour of points or the fill colour of bars on a graph), you could use scale_fill_discrete() function or
the scale_fill_continuous() function.

There are a large amount of functions like these and, at this point, you do not need to concern yourself

55 Scales

with all their varieties and how they work. What is important to recognize here is that each scale function
specifies, inside its name, what aesthetic (e.g., colour, shape, fill, etc.) it is modifying:

scale_<aesthetic name>_<transformation>()

The “transformation” part of the function’s name is intended to describe how the function modifies the
aesthetic which will hopefully become more apparent as we move through some examples.

2.9.1 Position Scales: Modifying the Axis Breaks

When we first created the grid on to which we drew our points, we had actually mapped some aesthetics to do
this. Specifically, we mapped the x and y aesthetics to the $bodywt and $sleep_total columns respectively.
In other words, we had written:

1 ggplot(data = msleep, aes(x = bodywt, y = sleep_total))

When first mapping the x and y axes of a plot, ggplot2 typically selects an appropriate sequence of values
to display for each. These are what are referred to as axis breaks and, most of the time, ggplot2’s default scaling
for the breaks is excellent. However, there are occasions where more customized scaling is necessary. In these
situations, the following four functions are useful:

1. scale_x_continuous()

2. scale_y_continuous()

3. scale_x_discrete()

4. scale_y_discrete()

The above four functions allow you to easily modify what values appear on your axis; though, which one you use
depends on whether your axis has a continuous or discrete position scale. Position scales control the location
mappings of a plots visual elements.

In the case of the mammal sleep data we plotted, both the x-axis scale (body weight) and y-axis scale
(sleep total) are continuous in nature. In other words, the axis values represent measured numeric values as
opposed to categories. Another way of conceptualizing this continuous vs discrete distinction is to approach it
from R’s perspective. In this case, both axes represent numeric objects as opposed to character objects. Thus,
for the purpose of plotting, they are treated as a continuous scale.

1 mode(msleep$bodywt_log10) # x-axis

2 mode(msleep$sleep_total) # y-axis

[1] "numeric"

[1] "numeric"

If we had, for instance, plotted a categorical variable on the x-axis (e.g., the conservation status of the
animal) then the x-axis would be discrete while the y-axis remains continuous (we will see an example of this
later on).

To customize the breaks on our axis, we simply need to add one of the aforementioned functions to our
plot’s code and provide a vector of values we want to see displayed using the argument breaks . For instance,
if we want the x-axis to only display the numbers 1, 2, and 3, we would add
scale_x_continuous(breaks = c(1,2,3)) to our code (see line 11).

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3) +

3 geom_smooth(

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 56

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5

7) +

8 facet_wrap(~vore, nrow = 1) +

9 xlab("Log10(Body Weight kg)") +

10 ylab("Sleep Total (hrs)") +

11 scale_x_continuous(breaks = c(1,2,3))

carni herbi insecti omni unknown

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
0

5

10

15

20

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

In general, the best practice is not to specify values individually, but rather specify a sequence using
the seq() function we learned about in Chapter 1 (see section 1.4.7). For instance, we could have the x-axis
increment by 1s and the y-axis increment by 2s (see lines 11 and 12).

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3) +

3 geom_smooth(

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5

7) +

8 facet_wrap(~vore, nrow = 1) +

9 xlab("Log10(Body Weight kg)") +

10 ylab("Sleep Total (hrs)") +

11 scale_x_continuous(breaks = seq(-2, 4, 1)) +

12 scale_y_continuous(breaks = seq(0, 20, 2))

carni herbi insecti omni unknown

−2 −1 0 1 2 3 4 −2 −1 0 1 2 3 4 −2 −1 0 1 2 3 4 −2 −1 0 1 2 3 4 −2 −1 0 1 2 3 4
0

2

4

6

8

10

12

14

16

18

20

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

The four scale functions above can achieve a lot more than what is being shown here, but for most uses,
this basic adjustment of the axis breaks will be their primary purpose.

57 Scales

2.9.2 Modifying the Axis Range

In addition to axis break adjustment, the range of the axis will often require customization as well. To achieve
this, the best practice is usually to use the function coord_cartesian() . To illustrate with some absurd
values, we could have the x-axis span between -2 and +1 and have the y-axis span between −5 and +10.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3) +

3 geom_smooth(

4 method = "lm",

5 se = FALSE,

6 linewidth = 0.5

7) +

8 facet_wrap(~vore, nrow = 1) +

9 xlab("Log10(Body Weight kg)") +

10 ylab("Sleep Total (hrs)") +

11 scale_x_continuous(breaks = seq(-2, 4, 1)) +

12 scale_y_continuous(breaks = seq(0, 20, 2)) +

13 coord_cartesian(xlim = c(-2, 1), ylim = c(-5, 10))

carni herbi insecti omni unknown

−2 −1 0 1 −2 −1 0 1 −2 −1 0 1 −2 −1 0 1 −2 −1 0 1

0

2

4

6

8

10

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Note that, while the y-axis goes as low as -5, it does not show breaks below 0 because of how the breaks

argument in scale_y_continuous() were set.

At this point it is worth offering a disclaimer. Within the position scale functions mentioned earlier
(i.e., scale_x_continuous() and scale_y_continuous() , there is an argument called limits that will
allow you to set the range of the scale in a manner similar to the coord_cartesian() function. Additionally,
ggplot2 also has two other functions, xlim() and ylim() , that will do the same. However, setting the limits
of your plot with these arguments and functions is best avoided because they will remove data falling outside
of those specified limits. This can result in problems if your plot’s code is performing some type of statistical
calculation. For instance, if you remove lines 12 and 13 in the above script and add ylim(-2, 1) you will be
confronted with a very nasty error message, telling you (among other things) that ...

Warning messages:

1: Removed 83 rows containing non-finite outside the scale range

(`stat_smooth()`).

This occurs because values in our data falling outside of −2 and +1 are not recognized anymore, but ggplot2
needed those values to calculate that blue regression line using the geom_smooth() function. Thus, the moral
of the story is, if you need to “zoom-in” or “zoom-out” on a plot, use coord_cartesian() . Do not be tempted
by those other options.11

11Readers are probably wondering “what use does removing data outside of the limits serve? It seems like it would only ever

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 58

2.9.3 Colour Scales: Modifying Colour Mappings

Similar to how ggplot2 automatically selected a scaling for the breaks on the x and y axis, it also automatically
selected various colours to use when we mapped colour to the vore column. Moreover, the distinction between
continuous and discrete scaling applies just as much to colour as it does position. As illustrated in Figure 2.6
and 2.7, discrete colour scales are usually represented with a colour gradient and discrete scales are represented
by distinct colours (like in a box of crayons). While it is possible to do this, you usually do not want to use
a gradient to represent distinct categories because it makes the categories difficult to discriminate visually.
For instance, the $vore column we mapped to the colour aesthetic earlier contained distinct non-numeric
categories (e.g., carni, herbi, insecti, and so on); thus, a colour palette such as that seen in Figure 2.7 would be
much more appropriate than Figure 2.6.

2 4 6 8

0.
6

0.
8

1.
0

1.
2

1.
4

1:9

1

Figure 2.6: Example of a continuous colour scale (i.e., a colour gradient).

2 4 6 8

0.
6

0.
8

1.
0

1.
2

1.
4

1:9

1

Figure 2.7: Example of a discrete colour scale (a.k.a. a qualitative palette.)

2.9.4 Discrete Colour Scales

To illustrate the use of discrete colour scales lets create a simple plot we can experiment with.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(size = 3, shape = 21, stroke = 2)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

First we will map the edge colour to the column $vore .

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 2,

4 aes(colour = vore)

5)

cause more problems than it solves (especially if you are unaware it is happening).” And to that I say, yes.

59 Scales

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

Then, to override these colours we can simply use scale_colour_discrete() and input a vector of colours.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 2,

4 aes(colour = vore)

5) +

6 scale_colour_discrete(type = c("red", "blue", "green", "purple", "orange"))

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

The same effect can be achieved by using scale_colour_manual() instead.

1 ...

2 scale_colour_manual(values = c("red", "blue", "green", "purple", "orange"))

However, the advantage to using scale_colour_discrete() is you are not limited by the number of categories
in your palette. This means you can create a bigger colour palette and ggplot2 will only use as many colours
as needed. By contrast, if you use scale_colour_manual() , you have to ensure that you specify the same
amount of colours as there are categories. To illustrate, we can create a palette with eight colours, but ggplot2
will only use the first six.

1 # Create a colour palette

2 palette <- c(

3 "#000000", "#DF536B", "#61D04F", "#2297E6", "#28E2E5", "#CD0BBC", "#F5C710",

4 "#9E9E9E"

5)

6

7 # Use that palette in your plot

8 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

9 geom_point(

10 size = 3, shape = 21, stroke = 2,

11 aes(colour = vore)

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 60

12) +

13 scale_colour_discrete(type = palette)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

Notice that we are using pch 21 as our shape. Recall that this shape takes both an edge and fill colour
(see Figure 2.3). At present, we have not specified a fill colour, so the points are hollow. However, instead of
modifying the edge colour like we have been doing, we could modify the fill colour of the points and just keep
the edges black.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 1, colour = "black",

4 aes(fill = vore)

5) +

6 scale_fill_discrete(type = palette)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

Notice where the important changes have taken place in the code. We have moved the colour aesthetic
outside of the aes() function. This means a single colour (black) will now be mapped to all the points.
We have also mapped the $vore column to the fill aesthetic inside of aes() and, for that reason, now
specify scale_fill_discrete() to modify the colour options. In other words, we are now adjusting the fill
colour, not the point/edge colour.

Pre-Existing Discrete Colour Palettes

Until now, we have been specifying our own custom colour palettes; however, base R contains a variety of
pre-existing palettes we can make use of. To obtain the list you can simply run the following:

1 palette.pals()

61 Scales

[1] "R3" "R4" "ggplot2" "Okabe-Ito"

[5] "Accent" "Dark 2" "Paired" "Pastel 1"

[9] "Pastel 2" "Set 1" "Set 2" "Set 3"

[13] "Tableau 10" "Classic Tableau" "Polychrome 36" "Alphabet"

Of note, palettes "R4" , "Okabe-Ito" , "Dark 2" , "Paired" , and "Set 2" , are all decently robust
under conditions of colour vision deficiency. To obtain a vector of the hex codes used for a specific palette,
you can just run palette.colors(n = NULL, "Dark 2") , but it is usually more convenient to insert this
function directly into ggplot2. Figure 2.8 illustrates the colours employed in each palette - only eight colours
are shown but some do contain more.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 1, colour = "black",

4 aes(fill = vore)

5) +

6 scale_fill_discrete(type = palette.colors(n = NULL, "Dark2"))

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

2.9.5 Continuous Colour Scales

Continuous colour scales operate more or less in the same manner as discrete ones; however, to illustrate them,
we need to map colour to a continuous variable. In the msleep data, there is a column called $brainwt

which, similar to $bodywt , is a continuous measure. To visualize it adequately we will need to log transform
it as well. For simplicity we will do this directly in the plot’s code:

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 1, colour = "black",

4 aes(fill = log10(brainwt))

5)

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 62

R3: 8 colours R4: 8 colours

ggplot2: 8 colours Okabe−Ito: 9 colours

Accent: 8 colours Dark 2: 8 colours

Paired: 12 colours Pastel 1: 9 colours

Pastel 2: 8 colours Set 1: 9 colours

Set 2: 8 colours Set 3: 12 colours

Tableau 10: 10 colours Classic Tableau: 10 colours

Polychrome 36: 36 colours Alphabet: 26 colours

Figure 2.8: Examples of the various discrete colour palettes in base R.

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

log10(brainwt)

−3

−2

−1

0

Immediately you can see we are now presented with a colourbar instead of a set of fixed colours. This
is because the nature of the variable $brainwt is that it is continuous. Thus, it does not fall neatly into
distinct categories. Between any two brain weights there is a theoretically infinite amount of values and the
colourbar’s gradient offers a means of representing that. As you move from black to blue, lighter shades of blue
are indicative of a heavier brain weight. Looking at the graph, increases in body weight also seem to correspond
to increases in brain weight, but notice the grey points in the graph. Those are indicative of missing values in
the $brainwt column and with a bit of R code, we can filter the data to see what values these are specifically.

1 filter(msleep, is.na(brainwt))

In case it is not obvious, this code works by using the is.na() function to check whether each row in
the msleep data frame’s $brainwt column contains an NA value. Rows which result as TRUE are displayed
and everything else is ignored. This leaves us with a data frame of 27 different animals, all of which have a NA

value in the $brainwt column.

If you are left unsatisfied by the default black to blue gradient, ggplot2 makes it easy to produce custom

63 Scales

colour gradients using the scale_fill_gradient() and scale_fill_gradient2() functions, and of course
there are colour aesthetic variants of this for situations where you want to modify the edge and point colours.12

Both functions simply require you to specify a low colour argument that represents the bottom of the colourbar
and a high colour argument that represents the top of the colour bar. However, scale_colour_gradient2()

also requires you to specify the argument mid , which indicates a third midpoint colour. You can even specify
the location of this midpoint with the argument midpoint . More succinctly scale_colour_gradient()

creates sequential colour palettes, and scale_colour_gradient2() creates diverging colour palettes.

In addition to those main arguments, you can also specify what colour you would like NA values to
be represented by and set the the breaks that appear on the colourbar. These are given by the arguments
na.value and breaks respectively.

1 # scale_colour_gradient example

2 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

3 geom_point(

4 size = 3, shape = 21, stroke = 1, colour = "black",

5 aes(fill = log10(brainwt))

6) +

7 scale_fill_gradient(

8 low = "blue",

9 high = "red",

10 na.value = "green",

11 breaks = seq(-4, 1, 1)

12)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

log10(brainwt)

−3

−2

−1

0

With the mammal sleep data, there is no logical reason to plot a midpoint colour using
scale_colour_gradient2() but to illustrate its use we will depict a midpoint using the colour "grey" and
we will place it at a log10(brain weight) = −1.5.

1 # scale_colour_gradient2 example

2 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

3 geom_point(

4 size = 3, shape = 21, stroke = 1, colour = "black",

5 aes(fill = log10(brainwt))

6) +

7 scale_fill_gradient2(

8 low = "blue",

9 mid = "grey",

10 high = "red",

12These are scale_colour_gradient() and scale_colour_gradient2() .

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 64

11 midpoint = -1.5,

12 na.value = "green",

13 breaks = seq(-4, 1, 1)

14)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

log10(brainwt)

−3

−2

−1

0

Pre-Existing Continuous Colour Palettes

Similar to what we saw with discrete colour scales, R comes with a set of continuous colour palettes we can use,
some of which are sequential and some of which are diverging. For those interested, these palettes are based
around an HCL (hue-chroma-luminance) colour space model which confers some advantages over the HSV
(hue-saturation-value) colour space model computers have traditionally employed (Zeileis & Murrell, 2019).

To obtain a list of these HCL palettes you can simply run any of the following lines for sequential,
diverging, and qualitative palettes respectively.

1 hcl.pals(type = "sequential")

2 hcl.pals(type = "diverging")

3 hcl.pals(type = "qualitative")

The qualitative palettes work best for discrete scales (i.e., identifying distinct categories) where you want
each category to have equal perceptual weight. These are not much use for our present purposes but are notable
because they are based on a HCL colour space model. That means we are not limited by the amount of colours
in the palette like we were with R’s standard discrete colour palettes (see section 2.9.4). Though, anecdotally,
when you go beyond 6 categories the HCL qualitative palettes’ colours start to become more and more difficult
to discriminate between (even with standard colour vision). Interestingly, ggplot2’s default discrete colour
selection relies on a similar underlying theory.

To obtain the hex codes for any given palette (e.g., "Inferno") you will, in addition to providing the
palette name, need to specify how many hex codes you want to see using the argument n . Visual examples of
the three HCL palette types are provided in Appendix B.

1 hcl.colors(n = 8, palette = "Inferno")

[1] "#040404" "#341348" "#701069" "#AB1E75" "#DC4962" "#F58426" "#F8C149" "#FFFE9E"

To use one of base R’s HCL colour palettes in our plot we can use the function
scale_fill_gradientn() to set our palette. The function just takes a vector of colours and extrapolates a
gradient from that.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, shape = 21, stroke = 1, colour = "black",

65 Scales

4 aes(fill = log10(brainwt))

5) +

6 scale_fill_gradientn(

7 colours = hcl.colors(n = 50, palette = "Inferno"),

8 na.value = "grey",

9 breaks = seq(-4, 1, 1)

10)

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

log10(brainwt)

−3

−2

−1

0

2.9.6 Shape Scales

We know that relying solely on colour to visually discriminate categories is inadvisable due to colour vision
deficiencies people may have; thus, in addition to adjusting the colour scales, we can also adjust the shape scale
simultaneously by mapping $vore to both shape and fill within the aes() function. For the shapes we
will use the pch symbols 21 - 24 and also have the category “unknown” be represented by pch 13 (see Figure
2.3) - recall that these particular symbols (21 - 24) take both a colour and fill aesthetic. We will keep the edges
(i.e., colour aesthetic) black but, for the fill aesthetic, we will use the "R4" colour palette (see Figure 2.8).

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, stroke = 1, colour = "black",

4 aes(fill = vore, shape = vore)

5) +

6 scale_shape_manual(values = c(21:24), na.value = 13) +

7 scale_fill_discrete(type = palette.colors(n = NULL, "R4"))

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

vore

carni

herbi

insecti

omni

unknown

2.9.7 Legend Titles

In all the examples above, the legend that ggplot2 produced has always been titled with the name of the column
it is representing. For instance, when we mapped the categories in the $vore column it was titled “vore.”

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 66

When we mapped log10(brainwt , it was titled “log10(brainwt).” To adjust the name of the legend, each
scale function we have used also takes a name argument which will dictate how the legend is titled. For
instance, keeping with the above example, we could adjust the legend title to read ”Diet”.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, stroke = 1, colour = "black",

4 aes(fill = vore, shape = vore)

5) +

6 scale_shape_manual(values = c(21:24), na.value = 13, name = "Diet") +

7 scale_fill_discrete(type = palette.colors(n = NULL, "R4"), name = "Diet")

5

10

15

20

−2 0 2 4
bodywt_log10

sl
ee

p_
to

ta
l

Diet

carni

herbi

insecti

omni

unknown

In this example, we have two scales in our legend, the shape scale and the fill scale. If you do
not specify an identical name for each, they will be treated as separate legends. For instance, try giving
scale_shape_manual() a different name than scale_fill_discrete() and see what happens.

An alternative method for renaming your legend is to add the function labs() to your plot’s code and
specify the name of each scale as a separate argument.

1 ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, stroke = 1, colour = "black",

4 aes(fill = vore, shape = vore)

5) +

6 scale_shape_manual(values = c(21:24), na.value = 13) +

7 scale_fill_discrete(type = palette.colors(n = NULL, "R4")) +

8 labs(

9 shape = "Diet",

10 fill = "Diet"

11)

2.9.8 Other Scales

In the sections above, we have only considered the position, colour, fill, and shape scales, which are among the
features most frequently appealed to when graphing, but similar functions exist for other scales. For instance,
there are scale functions to modify the size, linewidth, and linetype aesthetics if needed. To learn more about
these and other features, an excellent resource is the tidyverse’s official ggplot2 website, which contains a learning
section that will direct you to various excellent resources (https://ggplot2.tidyverse.org/), the best and most
comprehensive of which is the official manual for ggplot2 titled “ggplot2: Elegant Graphics for Data Analysis.”
Keeping with the ethos of “free software”, this is available to read online for free at

https://ggplot2.tidyverse.org/

67 Modifying Other Non-data Components

https://ggplot2-book.org/

2.10 Modifying Other Non-data Components

One thing that will be apparent is that ggplot2 has a very specific “look” to it, and that look is not arbitrary. It
was crafted meticulously on the basis of expert advice. In the language of ggplot2, this look is what is referred
to as a theme. Specifically, we are seeing theme_grey() and in the dark master’s own words:

The theme is designed to put the data forward while supporting comparisons, following the advice of Tufte

2006; Brewer 1994; Carr 2002, 1994; Carr and Sun 1999. We can still see the gridlines to aid in the judgement

of position (Cleveland, 1993), but they have little visual impact and we can easily `tune' them out. The grey

background gives the plot a similar typographic colour to the text, ensuring that the graphics fit in with

the flow of a document without jumping out with a bright white background. Finally, the grey background

creates a continuous field of colour which ensures that the plot is perceived as a single visual entity.

- Wickham et al., 2024

To sum up, the grey theme is immaculate in its conception and cannot be improved upon. In fact, once one
has borne witness to the majesty of theme_grey() , even small departures from it can have drastic effects on
a person’s physical and mental well being. That being said, ggplot2 still offers its users the ability to modify
any aspect of the plot they wish - just be careful what you wish for.

2.10.1 Built-in Themes

Once the scaling and other main visual elements related to data presentation are complete, it is often helpful to
set your plot’s code as a variable you can append other elements to. Meaning that, in the same way a number
in R is an object that you can name and add things to - e.g.,

1 x <- 1

2 x + 2

[1] 3

your plot is also an object (just a very complex one) that you can add things to. For instance, on the first line
of our plot’s code, right before the function ggplot() , we could give our plot the name my_plot .

1 my_plot <- ggplot(msleep, aes(x = bodywt_log10, y = sleep_total)) +

2 geom_point(

3 size = 3, colour = "black",

4 aes(fill = vore, shape = vore)

5) +

6 scale_shape_manual(values = c(21:24, 13)) +

7 scale_fill_discrete(type = palette.colors(n = NULL, "R4")) +

8 labs(

9 shape = "Diet",

10 fill = "Diet"

11) +

12 xlab("Log10(Body Weight kg)") + ylab("Sleep Total (hrs)")

Now, when you run my_plot you can see it output to the plot window.

https://ggplot2-book.org/

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 68

1 my_plot

5

10

15

20

−2 0 2 4
Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

The quickest way to modify the overall appearance of your plot - which works well as a starting point for
other modifications you want to make - is to use one of ggplot2’s built in themes shown in Figure 2.9. Simply
add the theme’s function to your plot’s code. For instance, if you wanted to use the black and white theme,
theme_bw() , you would run ...

1 my_plot + theme_bw()

Additional pre-built themes can be accessed via other R packages, such as ggthemes .

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_grey()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_bw()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_linedraw()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_light()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_dark()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_minimal()

5

10

15

20

-2 0 2 4

Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

theme_classic()

Diet

carni

herbi

insecti

omni

unknown

theme_void()

Figure 2.9: Visual examples of the eight built-in themes ggplot2 provides.

69 Modifying Other Non-data Components

2.10.2 Customizing Themes

Obtaining a more fine-grained control over the visual elements will require the use of ggplot2’s theme()

function. Admittedly, there is so much customization possible here that an exhaustive explanation would
require at least an additional chapter’s worth of content. For simplicity, we will restrict the discussion to axis
text modifications. This should illustrate the overall process well-enough and generalize nicely across the plot’s
numerous other elements. That being said, readers looking to adjust these other elements will still need consult
documentation of some kind for specifics. The official ggplot2 manual is unquestionably the best resource in
this respect:

https://ggplot2-book.org/themes.html#sec-theme-elements

To modify the axis text, we first need to specify, within the theme() function, the name of the element
we want to modify. In this case, since we want to modify both the x and y axis, we will specify axis.text .
Then we need to specify a function to modify this element we have chosen. In this case, since we want to modify
text, we will use the function element_text() . Within that, we can specify numerous arguments related to
the text. For a full list of arguments, it is highly recommended that the reader consult the R documentation:
?element_text()

1 my_plot + theme_bw() +

2 theme(

3 axis.text = element_text(size = 18, face = "bold", colour = "red", angle = 45)

4)

5

10

15

20

−2 0 2 4
Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

Notice that the code affected both axes; however, if we want to affect a change for only one axis (e.g., the
x-axis) we just specify the element as axis.text.x . This will also allow us to include a margin argument
to affect the spacing around the text.

1 my_plot + theme_bw() +

2 theme(

3 axis.text.x = element_text(

4 size = 18, face = "bold", colour = "red", angle = 45,

5 margin = margin(t = 1, r = 0, b = 0, l = 0, unit = "cm")

6)

7)

https://ggplot2-book.org/themes.html#sec-theme-elements

2. Harnessing Sacred Rites of the tidyverse: Plotting Basics 70

5

10

15

20

−2 0 2 4
Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

A similar logic applies to the axis title. In that case we would modify the axis.title element. And
again, if we wanted to modify the x-axis title specifically, we would use axis.title.x . The y-axis title would
of course be axis.title.y .

1 my_plot + theme_bw() +

2 theme(

3 axis.text.x = element_text(

4 size = 18, face = "bold", colour = "red", angle = 45,

5 margin = margin(t = 1, r = 0, b = 0, l = 0, unit = "cm")

6),

7 axis.title.y = element_text(

8 size = 18, face = "italic", colour = "deepskyblue3", angle = 90

9)

10)

5

10

15

20

−2 0 2 4
Log10(Body Weight kg)

S
le

ep
 T

ot
al

 (
hr

s)

Diet

carni

herbi

insecti

omni

unknown

2.11 A Final Note

In the plots created above, we have gone through how to adjust a wide variety of elements but there are two
adjustments that have not been discussed:

1. How do you change the order of the categories? For instance, suppose we wanted “herbi” to be at the top
of the “Diet” legend. Or suppose we wanted it to come first in our sequence of faceted plots we created

71 A Final Note

in section 2.6. How can we make that happen?

2. How do we adjust the names of the categories? Each category of vore/diet has had its name shortened,
but what if we wanted to write out each category in its entirety. E.g., display “carnivore” instead of
“carni”, and “herbivore” instead of “herbi”, and so on.

The answer to both these questions requires first understanding “factors,” which will be explained later
in the next chapter.

Chapter 3

The Invocation andMetamorphosis of Data

C
hapter 1 stated that data frames are essential for keeping a host of related information stored in a
well organized manner that is easy to manipulate. When printed to the console, data frames present
as a familiar spreadsheet-like structure that can be created, subset, and altered in various ways (see

section 1.4.10 for details). Moreover, in chapter 1, we saw how a data frame can be constructed by manually
entering values with R code. And, for all but the smallest of data sets, this method is time-consuming and
highly prone to error. A better strategy is to take an existing file of information and import that directly into
R as a data frame or, depending on the nature of the data, as a list, matrix, array, or table. A data frame is
usually going to be the optimal choice and will be the primary focus of this chapter.

Data can come in all kinds of different layouts and file formats and, in this respect, R has the ability
to handle pretty much any scenario that might arise. This chapter will, for the most part, work under the
assumption that the kind of data that you need to work with is in a conventional “spreadsheet-style” of format.
That is to say, like the msleep data used in Chapter 2, you have a bunch of rows and a bunch of columns,
and each cell contains just a single value.

3.1 Spreadsheet Software

When it comes to spreadsheets, there are many different file formats. Pretty much every spreadsheet application
has its own specific file type that is tailored to its unique purpose and platform. For instance, Microsoft’s Excel
spreadsheet application has its own proprietary format called the .xlsx file format. The stock spreadsheet
application on Macintosh computers, called Numbers, use the .NUMBERS file format. And if you use an open-
source spreadsheet software like Libre Office’s Calc application, you may be familiar with the .ods file format.

As everyone who is reading this doubtlessly appreciates, spreadsheet applications like Microsoft’s Excel,
Numbers, Libre Office’s Calc, etc., do more than just structure your data in a big table (which is all a spreadsheet
is). They allow you to do things like perform calculations, adjust cell colours, add images, insert comments, etc.
And all of this extra stuff is saved, in one form or another, inside the specific file associated with that software.
These features make applications like Microsoft’s Excel, for instance, a great tool for basic tasks like balancing
the household budget. However, for serious data analysis that requires the use of large data sets and complex or
heavy calculations, this kind of software is going to be more of a hindrance than a help. Adding in all of those
layers of additional functionality is going to increase your file sizes, inflate your load times, create restrictions
on how much information can be contained within your spreadsheet, and will increase the chance of a glitch
occurring. Additionally, and most importantly, both the analyses and the data are all contained within the
same file, which makes it very easy to irrevocably damage your original data set, often without even realizing

73

3. The Invocation and Metamorphosis of Data 74

it. The fact is, we should care about analyzing our data efficiently and safely, not making it look pretty in what
amounts to a fancy table, and this is one of the key benefits of using R.

From the point of view of R, a spreadsheet is just a way of displaying the raw information it is analysing,
and nothing more. The analysis of that information is what R does. Technically then, we should not be
referring to something as a “spreadsheet file,” but rather a “data file.” The spreadsheet aspect of all of this is
more about how the data is structured for our viewing. However, data does not necessarily need to be viewed
as a spreadsheet - it can be viewed in all kinds of different ways. It is just that a spreadsheet is usually the
most convenient and intuitive way to view it and talk about it.

3.2 Using an Ethical File Format

As noted above, there are a variety of different spreadsheet file types data could be formatted as (.xlsx, .ods,
etc). To remain consistent with open-science principles (UNESCO, 2021), best practice dictates that you work
with your data in a file format that is both universally recognized across applications and will also stand the
test of time in terms of compatibility. In other words, we want to (ideally) work with a file format that has
no immediate risk of becoming obsolete and can be read by multiple computers on multiple platforms without
forcing the user to pay for some proprietary application. Along these lines, the most widely used and recognized
format is the .csv file format.

3.3 The .CSV Format

“CSV” stands for “comma separated values.” It gets its name from the fact that it is, quite literally, noth-
ing more than a generic text document that uses commas to denote a tabular (spreadsheet structure) in the
data.1 This is easiest to see with an example. The GitHub repository for this book contains a file called
MM_Madison_wide.csv . The file is located within the data directory at ./data/ch-3/MM-candy/ . The
GitHub repo can be accessed at the following URL:

https://github.com/statistical-grimoire/book/

It contains measurements of the colour distribution of M&M Milk Chocolate candies, collected by Josh Madison
for his blog (Madison, 2007). Josh purchased a case of Milk Chocolate M&M’s (which is 48 separate packages of
M&M’s) and counted how many of each M&M colour (blue, brown, green, orange, red, yellow) were contained
in each pack. He did this, ostensibly, to evaluate a theory he had about the manufacturing process of the
candies.2

Upon opening the file within GitHub,3 you will see that it displays the file’s contents in a fairly typical
spreadsheet layout (see Table 3.1 for an example displaying the first 6 rows).

1“Tabular” and “spreadsheet” mean the same thing here.
2Or, more realistically, he just wanted a excuse to purchase and eat Milk Chocolate M&M’s guilt free.
3https://github.com/statistical-grimoire/book/blob/main/data/ch-3/MM-candy/MM_Madison_wide.csv

https://github.com/statistical-grimoire/book/
https://github.com/statistical-grimoire/book/blob/main/data/ch-3/MM-candy/MM_Madison_wide.csv

75 Delimiters

pkg weight_oz year blue brown green orange red yellow
1 1.00 1.69 2007 13 7 12 9 7 8
2 2.00 1.69 2007 8 3 13 13 10 6
3 3.00 1.69 2007 8 10 11 10 5 10
4 4.00 1.69 2007 14 4 6 14 7 9
5 5.00 1.69 2007 6 8 10 12 8 8
6 6.00 1.69 2007 7 11 13 7 4 13

Table 3.1: First 6 rows of the MM_Madison_wide.csv data displayed in a spreadsheet structure.

However, this is just how GitHub presents .csv files. The actual raw data is a basic text document that
separates individual values with a comma. We can see this more clearly if we click the button labelled “Raw”
which will present the file in its unaltered (i.e., raw) text format. The first 6 rows can be seen below

pkg,weight_oz,year,blue,brown,green,orange,red,yellow
1,1.69,2007,13,7,12,9,7,8
2,1.69,2007,8,3,13,13,10,6
3,1.69,2007,8,10,11,10,5,10
4,1.69,2007,14,4,6,14,7,9
5,1.69,2007,6,8,10,12,8,8
6,1.69,2007,7,11,13,7,4,13
...

Example of the MM_Madison_wide.csv data file displayed in its raw text format. Only the first six rows are shown.

Comparing the two versions it can readily be seen how the commas are functioning. They separate
individual cells/columns and each new line represents a new row in the spreadsheet. This not only makes
it easy to read .csv files within a basic text editor, but create them as well. Just save (or rename) the text
document with a .csv file extension (which you may need to configure your computer to display). Alternatively,
if you have a good spreadsheet software on your computer, they will always have the ability to “Save As” a
.csv file or “Export” to one. For instance, the save menu of Microsoft Excel will present the user with a drop
down list of potential file types it can save as and (as of writing this) has four different versions of .csv files
(the best option is the one labelled “UTF-8 (Comma delimited)”). By contrast the Numbers application on a
Mac will not permit a spreadsheet to save as anything other than a .NUMBERS file, but will allow you to export
your saved spreadsheet as a .csv. Just select File → Export To → CSV...

3.4 Delimiters

In the case of the MM_Madison_wide.csv file, the comma is functioning as a delimiter; which is to say it is
a character that defines the limits of (i.e., it “delimits”) individual values. Commas are not the only characters
that can be used to delimit, any character can technically be used. Other common delimiters include semicolons
(;) and tab-key spaces. Semicolons are often used when the data is logged with commas representing decimal
points instead of periods (e.g., 13.666 = 13,666), which is a frequent practice in many countries. Oddly, when a
delimited file uses semicolons, it is still often given a .csv file extension despite it being a completely different
character. In R, to avoid confusion, the convention is to refer to these semicolon delimited files as csv2 files
in function names (e.g., write_csv() would use a comma to delimit whereas write_csv2() would use a
semicolon).

Tab spaces (i.e., pressing “tab” on your keyboard), are also frequently employed as a delimiter, but these

3. The Invocation and Metamorphosis of Data 76

are usually denoted as .TSV files (i.e., tab separated values). In fact, the name for the keyboard key “tab”
comes from the the verb “tabulate” because the key facilitated easier generation of tables when working on
a typewriter. Prior to the tab key’s development, the space bar had to be repeatedly pressed to advance the
typewriter’s carriage to align columns appropriately.

If you were to save the MM_Madison_wide data set as a .tsv file and open it within a generic text
editor, you would see something very similar to the following ...

pkg weight_oz year blue brown green orange red yellow
1 1.69 2007 13 7 12 9 7 8
2 1.69 2007 8 3 13 13 10 6
3 1.69 2007 8 10 11 10 5 10
4 1.69 2007 14 4 6 14 7 9
5 1.69 2007 6 8 10 12 8 8
6 1.69 2007 7 11 13 7 4 13
...

Example of the MM_Madison_wide.csv data file displayed in its raw text format if it were a .TSV file. Only the first six rows are
shown.

Notice that the tabular separation gives the file a much more grid-like aesthetic that is easier to read.
Incorporating spaces into the text file can be used to further refine the alignment.

3.5 Reading a CSV File into R

Now that we have a good sense of what a .csv file is we should discuss how to load it into R as a data frame
object so we can conduct our analyses. To begin with, you should download MM_Madison_wide.csv from
the aforementioned GitHub repo by simply clicking the “down arrow” icon labelled “Download raw file.” Once
downloaded, simply place the file inside your working directory.4 Depending on the browser you are using you
may have to hunt around for the download option. For instance, if you are using Safari, you may have to select
“more file actions.”

With the file in its appropriate location you can simply run the function read_csv() and give it the
full name (with extension) of your file. This will create a data frame object in R. However, read_csv() is a
function that belongs to the readr package which is part of the tidyverse, so if you do not have the tidyverse
loaded, this will not work. In order to easily call our loaded data, we will assign it the name mm_df .

1 library(tidyverse)

2 mm_df <- read_csv("MM_Madison_wide.csv")

Rows: 48 Columns: 9

Column specification

Delimiter: ","

dbl (9): pkg, weight_oz, year, blue, brown, green, orange, red, yellow

Use `spec()` to retrieve the full column specification for this data.

Specify the column types or set `show_col_types = FALSE` to quiet this message.

Running the above code presents us with some useful information about the data set we have loaded.
We can see that it has 48 rows and 9 columns, uses a , as a delimiter, and the 9 columns all consist of dbl

4If you are unsure what a “working directory” is see section 1.7

77 Reading a CSV File into R

values, which is a shorthand way of referring to double-precision number. To simplify a complex story, R has
multiple types of numeric objects; i.e., it has multiple ways of representing a number. A double, as its often
referred to, is one such representation. If that is confusing, do not worry, what is important to take away from
the output is that dbl means the 9 columns all contain numeric values.

Running mm_df will print the data frame to the console.

1 mm_df

A tibble: 48 × 9

pkg weight_oz year blue brown green orange red yellow

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 1.69 2007 13 7 12 9 7 8

2 2 1.69 2007 8 3 13 13 10 6

3 3 1.69 2007 8 10 11 10 5 10

4 4 1.69 2007 14 4 6 14 7 9

5 5 1.69 2007 6 8 10 12 8 8

6 6 1.69 2007 7 11 13 7 4 13

7 7 1.69 2007 8 7 13 8 7 9

8 8 1.69 2007 12 10 6 8 8 9

9 9 1.69 2007 6 9 12 14 8 6

10 10 1.69 2007 7 8 12 10 11 7

38 more rows

Use `print(n = ...)` to see more rows

You can now subset and manipulate mm_df like we did in Chapter 1 when we first discussed data frames
(see section 1.4.10). For instance, if we wanted to look at the mean number of green M&M’s across all the
packages we could simply run:

1 mean(mm_df$green)

[1] 10.0625

read.csv() vs. read_csv()

To load the M&M data frame above, we used the function read_csv() , which is part of the tidyverse. However,
base R as similar function, read.csv() , that will do essentially the same thing - it will read a .csv file in
to R. For most use cases there is little advantage to adopting one function over the other, but if you have
the tidyverse loaded, you may as well use read_csv() because it does have some big advantages. First, it
offers excellent customization options, which are particularly useful when loading very large datasets or merging
multiple datasets. Second, it alerts you to any issues encountered during the loading process. Third, it performs
much faster under heavy loads than its base R counterpart, even providing a progress bar when reasonable to
do so. Finally, it stores the data as a tibble which will be discussed later.

3.5.1 Reading Other File Types into R

If your data is delimited by some character other than a comma (e.g., a semicolon, tab, backslash, etc.), there is
a more general function that can be employed called read_delim() which allows you to specify any delimiter
(i.e., separator) using the argument delim . For instance, we could have loaded the M&M data in the following
way:

1 mm_df <- read_delim("MM_Madison_wide.csv", delim = ",")

3. The Invocation and Metamorphosis of Data 78

If your text document was separated by semicolons you would just include delim = ";" , if it was separated
using tabs you would just delim = "\t" , and so on.

One thing that is worth appreciating about delimited files is that their file extension (e.g., the .csv or
.tsv at the end of the file name) is irrelevant to how R reads the file. As has been previously emphasized, .csv
files and .tsv files for instance, are just generic text documents, nothing more. This means you may see them
with the file extension .txt, but that will not impact how any of the above functions operate.

Now, what would you do if you wanted to load a Microsoft Excel spreadsheet file (i.e., a .xlsx file) into
R directly? Well as per the discussion on spreadsheets and ethical file formats (see section 3.1 and 3.2), the
best practice is to save it as a .csv using Excel and load that new file directly into R. However, should you
wish to eschew this advice, the tidyverse does have a package called readxl with functions that will allow you to
do this. This is not part of the nine core packages, so it will need to be loaded using the library() function.
A word of warning is in order though. As well made as the readxl package is, reading .xlsx files directly will,
almost certainly, cause more problems than it solves. These files are not intended to be read by anything other
than Excel and Microsoft does not want them read by anything other than Excel. Thus, by loading the .xlsx
file directly into R, you are (computationally speaking) picking an unnecessary fight with Microsoft. Nine times
out of ten, you will win that fight thanks to readxl, but you will still probably end up with some nasty bruises
and scars.

3.6 Tibbles vs. Data Frames

In the output for mm_df (and the msleep data from chapter 2) you can see that the output printed to the
console specifies that we are looking at something called a tibble: # A tibble: 48 x 9 . The output also
helpfully displays the dataset’s dimensions and the class of object contained within each column. This is in
contrast to the data frame created in chapter 1, which did not do any of that for us. In the tidyverse’s own
words, a tibble is a ...

modern reimagining of the data.frame, keepingwhat time has proven to be effective, and throwing out what

is not. Tibbles are data.frames that are lazy and surly: they do less (i.e. they don’t change variable names or

types, and don’t do partial matching) and complain more (e.g. when a variable does not exist). This forces

you to confront problems earlier, typically leading to cleaner, more expressive code. Tibbles also have an

enhanced print() method which makes them easier to use with large datasets containing complex objects.

- https:// tibble.tidyverse.org/

(2024/07/28)

In terms of basic usage, tibbles function almost identically to the classic data frame discussed in chapter
1. For instance, we can re-create chapter 1’s data frame as a tibble using an identical syntax.

1 df <- tibble(

2 Subject = 1:10,

3 Group = c("Exp", "Cont", "Exp", "Cont", "Exp", "Exp",

4 "Cont", "Exp", "Cont", "Cont"),

5 Value = c(-0.36, 0.28, 1.54, 0.51, -1.28, 1.15,

6 -2.22, -0.51, NA, -1.04)

7)

8

9 df

A tibble: 10 × 3

Subject Group Value

https://tibble.tidyverse.org/

79 Tibbles vs. Data Frames

<int> <chr> <dbl>

1 1 Exp -0.36

2 2 Cont 0.28

3 3 Exp 1.54

4 4 Cont 0.51

5 5 Exp -1.28

6 6 Exp 1.15

7 7 Cont -2.22

8 8 Exp -0.51

9 9 Cont NA

10 10 Cont -1.04

There are a number of interesting differences between tibbles and data frames, but nothing that merits any
in depth discussion for a beginner with R. What is perhaps worth noting is that it is easy to switch between
the two should the need arise. For example, to convert our tibble df to a data frame, we can simply use the
as.data.frame() function in R.

1 # tibble to data frame

2 df <- as.data.frame(df)

3 df

Subject Group Value

1 1 Exp -0.36

2 2 Cont 0.28

3 3 Exp 1.54

4 4 Cont 0.51

5 5 Exp -1.28

6 6 Exp 1.15

7 7 Cont -2.22

8 8 Exp -0.51

9 9 Cont NA

10 10 Cont -1.04

To convert it back to a tibble ...

1 # data frame to tibble

2 df <- as_tibble(df)

3 df

A tibble: 10 × 3

Subject Group Value

<int> <chr> <dbl>

1 1 Exp -0.36

2 2 Cont 0.28

3 3 Exp 1.54

4 4 Cont 0.51

5 5 Exp -1.28

6 6 Exp 1.15

7 7 Cont -2.22

8 8 Exp -0.51

9 9 Cont NA

10 10 Cont -1.04

3. The Invocation and Metamorphosis of Data 80

3.6.1 Displaying Tibbles in the Console

Tibble Dimensions

Given the limited screen space and the large size of most datasets, tibbles are designed to display only the first
10 rows when printed to the console, making it easier for users to work with their data.

Generally, if you want to view an entire data set, the best practice is not to display it in the console but
rather use R’s View() function which opens it in a spreadsheet style viewer. That being said, many people will
still find the number of rows displayed by a tibble within the console lacking, particularly if you are working on
anything other than a small laptop. For this reason, the 10 row limit is a behaviour which can be circumvented
in various ways. One simple way is to make use of the print() function. For instance, if we want to display
the first 20 rows we can simply run ...

1 print(mm_df, n = 20)

An alternative method is to change R’s default display behaviour by setting the number using the
options() function. You can set both a minimum and maximum number of rows to display.

1 options(

2 pillar.print_min = 30,

3 pillar.print_max = 30

4)

5

6 mm_df

If that method is your preference, then it is usually advisable to place the options() code at the top of your
R script because it only needs to be run once.5

What if you wanted to display every single row each time you print a tibble? Well, recall that R represents
infinity in the positive direction as (Inf). We can use that to our advantage here:

1 options(pillar.print_min = Inf)

2

3 mm_df

What about columns though? Well, interestingly tibbles will actually conform to the size of your console
screen. So if you can only fit five columns on screen, the tibble will only display those five and notify you of
the others not displayed beneath the output. This is done to preserve the “rectangleness” of the data so it can
be visualized appropriately. This also stands in stark contrast to how base R’s data frames behave, which will
stack columns on top of each other with no consideration of column or row space. Admittedly, its nice to have
all that information displayed, but it comes at the cost of being difficult for a human to visually parse. That
being said, if you wanted your tibbles to behave like this and always display all columns, you can just add an
additional argument, pillar.width = Inf , to the options() function:

1 options(

2 pillar.print_min = 30,

3 pillar.print_max = 30,

4 pillar.width = Inf

5)

6

7 mm_df

5If you are wondering why we specify pillar... to set rows, it’s because pillar is a package in the tidyverse.

81 Tibbles vs. Data Frames

However, if you wanted a more temporary solution, you can just add a width argument to the print()

function. E.g.,

1 print(mm_df, n = 30, width = Inf)

Understanding Significant Digits

To save space and facilitate easier reading, both tibbles and data frames will round values with many decimal
values. Though, in the case of tibbles, they do not just simply round to a preset number of digits. To illustrate
what tibbles are doing in this respect, recall that R has a built-in constant for π.

1 pi

[1] 3.141593

Using that, we will create a simple data frame that repeats π four times within a single column.

1 pi_df <- tibble(pie = rep(pi, 4))

2 pi_df

A tibble: 10 × 1

pie

<dbl>

1 3.14

2 3.14

3 3.14

4 3.14

One thing that will be noticed is that the tibble is only displaying π to two decimal places. However, all of
the digits still exist in R’s memory and any calculations you do will take those unseen digits into account. For
instance, if we isolate the first row’s value you can see that all the digits of π are displayed.

1 pi_df$pie[1]

[1] 3.141593

It is important to understand that tibbles do not strictly control the handling of decimals. Instead, they work
with significant digits. This allows the tibble to preserve its desired “rectangleness,” giving it cleaner looking
columns. Since tibbles default to three significant digits, π will only display as 3.14.

As a refresher of primary school math, with significant digits, everything in front of the decimal point is
always displayed, but each number in front of that decimal point uses up a significant digit (a.k.a. a “sig dig”).
For instance, if you had a number like 666.13. Displaying that to two sig digs would give you 666. Displayed
to three sig digs would again be 666. Displayed to four sig digs would be 666.1. Five sig digs would be 666.13.
Six sig digs would be 666.130. Seven would be 666.1300, and so on.

To increase the number of sig digs shown within a tibble we can simply add another argument to the
options() function:

1 options(pillar.sigfig = 16)

2 pi_df

A tibble: 10 × 1

pie

<dbl>

1 3.141592653589793e0

2 3.141592653589793e0

3 3.141592653589793e0

4 3.141592653589793e0

3. The Invocation and Metamorphosis of Data 82

Because of limitations of 64-bit computing, a tibble is not going let you exceed 16 sig digs and in certain
cases will display results in scientific notation. In this case we see some scientific notation, but it is to the power
of 0, so it can be ignored.

3.7 Wide Data vs. Tidy Data

3.7.1 Wide Data

Looking at the MM_Madison_wide.csv loaded at the outset of this chapter, you can see that the data is laid
out in a fairly logical manner. Each row corresponds to a different package of M&Ms and we can clearly see
how many M&Ms of a particular colour are in each package by examining the columns named, blue, brown,
green, etc.

1 mm_df

A tibble: 48 × 9

pkg weight_oz year blue brown green orange red yellow

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 1.69 2007 13 7 12 9 7 8

2 2 1.69 2007 8 3 13 13 10 6

3 3 1.69 2007 8 10 11 10 5 10

4 4 1.69 2007 14 4 6 14 7 9

5 5 1.69 2007 6 8 10 12 8 8

6 6 1.69 2007 7 11 13 7 4 13

7 7 1.69 2007 8 7 13 8 7 9

8 8 1.69 2007 12 10 6 8 8 9

9 9 1.69 2007 6 9 12 14 8 6

10 10 1.69 2007 7 8 12 10 11 7

38 more rows

Use `print(n = ...)` to see more rows

This style of layout makes it easy to do certain things with the data. For instance, if we wanted to know
the mean number of red M&Ms we could just run

1 mean(mm_df$red)

[1] 7.75

If we wanted to obtain the mean of every column, we could use the apply() function. This function
literally applies a function of your choosing to either the columns or rows. So we could, for instance, apply the
mean() function to each column.

1 apply(mm_df, MARGIN = 2, FUN = mean)

pkg weight_oz year blue brown green

24.500000 1.690000 2007.000000 10.020833 7.729167 10.062500

orange red yellow

11.333333 7.750000 7.687500

The argument FUN specifies what function is applied. The argument MARGIN specifies whether that function
is applied to the rows (1) or columns (2). In this case we are applying it to columns, so we specified 2 .

If you wanted to count how many M&Ms are in each individual package, you could apply the sum()

function to the rows - though, keep in mind that we would want to ignore pkg , weight_oz , and year values

83 Wide Data vs. Tidy Data

when doing this. Luckily we can use what we learned about indexing in chapter 1 to ignore these columns (see
section 1.4.10).

1 apply(mm_df[, 4:9], MARGIN = 1, FUN = sum)

[1] 56 53 54 54 52 55 52 53 55 55 54 54 52 55 55 53 55 56 54 57 55 54 55 57

[25] 53 54 54 57 56 57 55 54 54 57 56 56 55 55 55 53 55 54 54 53 54 54 55 55

At a superficial glance, you can see that R makes it fairly easy to work with data in this kind of layout.
However, we have not attempted anything fairly complicated here. The reality is that this layout, which we will
refer to in this book as wide data, is not optimal for most types of analyses and plotting. Additionally, until
you are actually in a position to do those kinds of analyses, it will be difficult to convince you of the truth of
this - so you will just have to take that point on faith. Wide data spreads variables across multiple columns. In
this case, you can treat of the colour of the M&Ms here (blue, brown, green etc.) as a variable in its own right.
We might call this variable simply “type.” That is to say, there is a “blue” type of M&M, a “brown” type of
M&M, and so on.6 There is also a second variable, which we could refer to as the “amount” of M&M’s, within
each of the six colour type columns.

When organizing or arranging data, best practices dictate that you restrict a single variable to a
single column. In this case, the variable “type” is being spread across six column headers. And the variable
“amount” is spread within those six columns. To fix this, we can use the tidyverse function pivot_longer() .

1 mm_tidy <- pivot_longer(mm_df,

2 cols = blue:yellow,

3 names_to = "type", values_to = "amount"

4)

5

6 mm_tidy

A tibble: 288 × 5

pkg weight_oz year type amount

<dbl> <dbl> <dbl> <chr> <dbl>

1 1 1.69 2007 blue 13

2 1 1.69 2007 brown 7

3 1 1.69 2007 green 12

4 1 1.69 2007 orange 9

5 1 1.69 2007 red 7

6 1 1.69 2007 yellow 8

7 2 1.69 2007 blue 8

8 2 1.69 2007 brown 3

9 2 1.69 2007 green 13

10 2 1.69 2007 orange 13

11 2 1.69 2007 red 10

12 2 1.69 2007 yellow 6

276 more rows

Notice a few differences with this pivoted data. There are now considerably more rows in the data, 288
vs. 48, and there are two new columns, $type and $amount which have replaced the six different colour type
columns. In terms of the pivot_longer() function we used, the most important argument we specified is the
argument cols , as this defines which columns are going to be collapsed into a single column. Using the : ,
we specified a range of columns (i.e., from blue to yellow), but we could have also given it a vector of column

6A better variable name would be “colour,” but colour is also a plotting aesthetic and, later in the chapter, we will be plotting
these data. So to keep the plot’s code a bit more intelligible, I’m refraining from using “colour” as the variable name.

3. The Invocation and Metamorphosis of Data 84

names like so: cols = c(blue, brown, green, orange, red, yellow) .7

The arguments names_to and values_to just specify the name of the new columns and are not strictly
required, but are good practice to include.

3.7.2 Tidy data

By collapsing the six colour columns into one, the data has ascended into a sacred arrangement known as tidy
data (or, as some heretics call it, “the long format”). Tidy data is a cornerstone of the tidyverse’s thaumaturgy
and all tidy data adheres to three basic precepts:

I. Each variable is a column; each column is a variable.
II. Each observation is a row; each row is an observation.
III. Each value is a cell; each cell is a single value.

It can be seen that the M&M data now satisfies these three standards, as did the msleep data used in chapter
2. As we progress through the remainder of this chapter, it will become apparent that having your data in this
tidy form will greatly facilitate both plotting and analysis.

3.8 Laying Pipe (The |> and %>%Operators)

One of the biggest contributions of the tidyverse to R has been its ability to utilize what is known as a “piping”
syntax with an almost otherworldly efficiency. This is not to say that the concept of piping was something
conjured by the tidyverse out of nothing. It is more that the tidyverse’s relentless invocation of it unearthed its
abilities to such a degree that the R community has, for the most part, adopted it as common usage. There is
no better truth of this than the fact that, as of version 4.1.0 released in 2021, piping has been integrated into
base R.8 But what is this curious thing called “piping”?

The essence of piping is that you are transferring the output of one thing to another. For instance, suppose
we wanted to know the mean amount of different M&M colours. We could of course insert the $amount column
into the mean function like so ...

1 mean(mm_tidy$amount)

[1] 9.097222

Alternatively, we could “pipe” (i.e., transfer) the $amount column in our tidy data to the mean()

function using R’s pipe operator |> .

1 mm_tidy$amount |> mean()

[1] 9.097222

As another example, suppose we wanted a tidy data frame that only contained the red M&M type. The
standard methodology would be to specify the data frame within the filter() function, like so ...

1 filter(mm_tidy, type == "red")

A tibble: 48 × 5

pkg weight_oz year type amount

<dbl> <dbl> <dbl> <chr> <dbl>

7The tidyverse has numerous methods for selecting multiple columns that don’t exist in base R. For a rundown of each see the
R documentation: ?tidyr_tidy_select

8Officially, I have no direct evidence that the pipe update to base R was motivated by the influence of the tidyverse, but given
the ubiquity of %>% and the dplyr package, it seems unreasonable to think otherwise.

https://stat.ethz.ch/pipermail/r-announce/2021/000670.html

85 Laying Pipe (The |> and %>% Operators)

1 1 1.69 2007 red 7

2 2 1.69 2007 red 10

3 3 1.69 2007 red 5

4 4 1.69 2007 red 7

5 5 1.69 2007 red 8

6 6 1.69 2007 red 4

7 7 1.69 2007 red 7

8 8 1.69 2007 red 8

9 9 1.69 2007 red 8

10 10 1.69 2007 red 11

38 more rows

Alternatively, we could pipe the data into the filter() function.

1 mm_tidy |> filter(type == "red")

A tibble: 48 × 5

pkg weight_oz year type amount

<dbl> <dbl> <dbl> <chr> <dbl>

1 1 1.69 2007 red 7

2 2 1.69 2007 red 10

3 3 1.69 2007 red 5

4 4 1.69 2007 red 7

5 5 1.69 2007 red 8

6 6 1.69 2007 red 4

7 7 1.69 2007 red 7

8 8 1.69 2007 red 8

9 9 1.69 2007 red 8

10 10 1.69 2007 red 11

38 more rows

In addition to this, suppose you did not want the $weight_oz or $year column in the output. To
achieve this, this output could be further piped into the tidyverse’s select() function which allows you to
grab specific columns.

1 mm_tidy |>

2 filter(type == "red") |>

3 select(pkg, type, amount)

A tibble: 48 × 3

pkg type amount

<dbl> <chr> <dbl>

1 1 red 7

2 2 red 10

3 3 red 5

4 4 red 7

5 5 red 8

6 6 red 4

7 7 red 7

8 8 red 8

9 9 red 8

10 10 red 11

38 more rows

Now that the logic of piping is clear, it is worth reiterating that the |> operator is a relatively new
arrival in base R. Prior to this, the convention would be to use the tidyverse’s pipe operator %>% instead.

3. The Invocation and Metamorphosis of Data 86

This comes from a package called magrittr, which contains a variety of pipes for different purposes, but the
most significant of these is %>% . Before R version 4.1.0, %>% was the de facto pipe used by the R community
at large. However, the recommended wisdom now (even by the keepers of the tidyverse) is to use base R’s
pipe and not magrittr’s. That being said, many are unaware of this update to base R and much of the help
documentation on websites like stack overflow still use magrittr’s %>% .

In terms of functionality, there is little meaningful difference between |> and %>% and all of the above
code could have been written using %>% .

The above examples nicely show how the pipe operator works, but we should consider a more realistic
use case to illustrate its versatility.

3.8.1 Data Manipulation Example

Summarising the Data

The M&M data we loaded earlier was of course in the wide format originally, which is rarely needed. So what
we could have done instead is loaded that data in to R using read_csv , then pipe it to the pivot_longer()

function and, if we wanted to, pipe that to the select() function to avoid keeping irrelevant columns.

1 mm_data <- read_csv("MM_Madison_wide.csv") |>

2 pivot_longer(cols = blue:yellow, names_to = "type", values_to = "amount") |>

3 select(pkg, type, amount)

4

5 mm_data

A tibble: 288 × 3

pkg type amount

<dbl> <chr> <dbl>

1 1 blue 13

2 1 brown 7

3 1 green 12

4 1 orange 9

5 1 red 7

6 1 yellow 8

7 2 blue 8

8 2 brown 3

9 2 green 13

10 2 orange 13

278 more rows

It is worth emphasizing the utility of the pipe operator here: It allowed us to get our data into the form
we wanted without creating and calling multiple different objects in memory. Only one object was created,
mm_data . Moreover, the “arrow-like” notation of the pipe |> nicely shows the workflow, i.e., logic, of our
code.

Now suppose we wanted to compute some summary statistics for this data set. For instance, maybe we
want to know the mean amount of each type of M&M. This is where the tidyverse’s functions group_by() and
summarise() become extremely useful. Both of these functions, as well as the filter() and select()

functions we have been using, come from the dplyr package in the tidyverse.

We will begin with the summarise() function which is used to create a data frame based on columns/vari-
ables in your data.

https://stackoverflow.com/

87 Laying Pipe (The |> and %>% Operators)

Box 3.1: Why is it called dplyr?

Generally, the names of R packages are relatively intuitive or are based on an initialism of some kind.
The dplyr package is an exception to that. The package’s strange name is a reference to both pliers
(the tool) and a family of functions based around the apply() function that we briefly used in
section 3.7.1. The “d” refers to data frames. i.e., it is as if you are taking a pair of pliers to data
frames.

A common go-to strategy of programmers generally is to use for-loops to do much of the computational
grunt work. For-loops just repeatedly execute a set of code until some condition has been satisfied.
While for-loops can be used in R, its users often prefer to take a different, more efficient, “vectorized”
approach. The goal is to use what are called functionals. These are functions that accept another
function as an input and produce a vector as output. That is precisely what the apply() function
and its relatives like lapply , sapply , vapply do. R is incredibly adept at working with vectors,
matrices, and arrays, and dplyr’s functions are all based around a strategy of using functionals for
data manipulation.

1 mm_data |>

2 summarise(m = mean(amount))

A tibble: 1 × 1

m

<dbl>

1 9.10

The code we have written is telling the summarise() function to apply the mean() function to the
$amount column. When it did this, it also created a new data frame and stored that calculation as a column
called $m (though, we could have named the column whatever we wanted).9

At present, none of this may not seem terribly useful; however, we can make it more useful by including
the group_by() function which will tell R to literally “group by” categories found in a different column or set
of columns. Specifically, we can tell it to group by $type and then summarise the data.

1 mm_data |>

2 group_by(type) |>

3 summarise(m = mean(amount))

A tibble: 6 × 2

type m

<chr> <dbl>

1 blue 10.0

2 brown 7.73

3 green 10.1

4 orange 11.3

5 red 7.75

6 yellow 7.69

We can now see the mean of each type in the data set and if we wanted, we could create another column
showing how many M&M’s of each type there are in total by taking the sum of all the blue M&M’s, the sum
of all the brown M&M’s and so on.

9If you are obtaining a giant value like 9.09722222222222e0 you probably forgot to reset the significant digits back to something
reasonable. See section 3.6.1.

3. The Invocation and Metamorphosis of Data 88

1 mm_data |>

2 group_by(type) |>

3 summarise(

4 m = mean(amount),

5 tot_type = sum(amount)

6)

A tibble: 6 × 3

type m tot_type

<chr> <dbl> <dbl>

1 blue 10.0 481

2 brown 7.73 371

3 green 10.1 483

4 orange 11.3 544

5 red 7.75 372

6 yellow 7.69 369

If we wanted to add in a column that represented the total amount of M&M’s across all the packages
(ignoring type) we could take the sum of the entire amount column ...

1 sum(mm_data$amount)

[1] 2620

and include that in the summarise() function.

1 mm_data |>

2 group_by(type) |>

3 summarise(

4 m = mean(amount),

5 tot_type = sum(amount),

6 tot_overall = sum(mm_data$amount)

7)

A tibble: 6 × 4

type m tot_type tot_overall

<chr> <dbl> <dbl> <dbl>

1 blue 10.0 481 2620

2 brown 7.73 371 2620

3 green 10.1 483 2620

4 orange 11.3 544 2620

5 red 7.75 372 2620

6 yellow 7.69 369 2620

With the columns $tot_type and $tot_overall we could determine the percentage of each M&M
type by just doing the math inside the summarise() function.

1 mm_data |>

2 group_by(type) |>

3 summarise(

4 m = mean(amount),

5 tot_type = sum(amount),

6 tot_overall = sum(mm_data$amount),

7 percent = tot_type / tot_overall * 100

8)

A tibble: 6 × 5

type m tot_type tot_overall percent

89 Laying Pipe (The |> and %>% Operators)

<chr> <dbl> <dbl> <dbl> <dbl>

1 blue 10.0 481 2620 18.4

2 brown 7.73 371 2620 14.2

3 green 10.1 483 2620 18.4

4 orange 11.3 544 2620 20.8

5 red 7.75 372 2620 14.2

6 yellow 7.69 369 2620 14.1

To finish up, lets also include the maximum and minimum number of each M&M type and store this
data frame as an object called mm_summary .

1 mm_summary <- mm_data |>

2 group_by(type) |>

3 summarise(

4 m = mean(amount),

5 tot_type = sum(amount),

6 tot_overall = sum(mm_data$amount),

7 percent = tot_type / tot_overall * 100,

8 min = min(amount),

9 max = max(amount)

10)

11

12 mm_summary

A tibble: 6 × 7

type m tot_type tot_overall percent min max

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 blue 10.0 481 2620 18.4 5 16

2 brown 7.73 371 2620 14.2 3 12

3 green 10.1 483 2620 18.4 5 17

4 orange 11.3 544 2620 20.8 7 17

5 red 7.75 372 2620 14.2 2 12

6 yellow 7.69 369 2620 14.1 2 14

Plotting the Summarised Data

Now that we have all of these summary statistics in a nice convenient data frame, we can plot them. In our
case, the M&M data contains six discrete categories in the $type column. This lends itself nicely to a bar
plot, so that is what we shall make.

The basic logic of plotting has been discussed at length in chapter 2, and this discussion will follow from
that.10 The first step will be to give ggplot2 the data and tell it which columns to map to the x and y axis
respectively. Then we will add the geom_bar() function to this. In this case, we are going to display the mean
(i.e., column $m) on the y-axis because that is a fairly standard practice many people will be familiar with.11

Though, it is worth remembering that any of the other numeric columns could be used as well.

1 ggplot(mm_summary, aes(x = type, y = m)) +

2 geom_bar(stat = "identity")

10In other words, if you haven’t read chapter 2, go back and do that.
11However, I should emphasize that just because everyone jumps off of a bridge, it doesn’t mean you should.

3. The Invocation and Metamorphosis of Data 90

0

3

6

9

blue brown green orange red yellow
colour

m

The argument stat = "identity" is simply telling ggplot2 to use the values within the mm_summary

data frame to create the bars. We needed to specify this because ggplot2 has the ability to take the raw data
directly (e.g., mm_data) and perform its own summary calculations. However, we do not need it to do that in
this particular case, hence why we included this argument.

You can see that what results is a bar graph representing the mean of each M&M type. To make this
look a bit nicer, we could change the fill colour of the bars to correspond to the respective colour types.12 When
we do this, we have to be mindful of the fact that the x-axis contains a discrete scale, not a continuous one like
we saw in chapter 2 (for more information on discrete vs. continuous scales see section 2.9.1).

First we will define our colour palette. To do this we could just specify the names of primary colours:
blue, brown, green and so on. However, the actual colour of M&M candies are slightly different than their
naming scheme would suggest. The hex codes used below are much more colour accurate.

1 mm_palette <- c("#2f9fd7", "#603a34", "#31ac55", "#f26f22", "#b11224", "#fff200")

Once my_palette has been created we can use it to adjust the colour of our bar graph.

1 ggplot(mm_summary, aes(x = type, y = m)) +

2 geom_bar(

3 stat = "identity",

4 colour = "black",

5 aes(fill = type)

6) +

7 scale_fill_discrete(type = mm_palette)

12Technically, this is something we should NOT do because, for the sake of comparison, its better to give all the bars the same
“visual weight.” Keeping all the bars the same colour does precisely that. Moreover, with the x-axis labels, there is no reason to
add additional elements that could be distracting. That being said, if you are collaborating on a project, your collaborators will
probably demand to see colourful bars irrespective this rationale (experience has taught me this). And if they outnumber you, they
can probably beat you in a fight - it doesn’t matter if you have the moral or logical high ground.

91 Laying Pipe (The |> and %>% Operators)

0

3

6

9

blue brown green orange red yellow
type

m

type

blue

brown

green

orange

red

yellow

Now, in addition to the mean of each M&M type, our data frame also has information pertaining to
the minimum and maximum number of M&M’s (these are columns $min and $max respectively). We could
incorporate that information in our graph with the use of errorbars. Errorbars are a visual representation of
our data’s spread, and the difference between the minimum and maximum represent a measure of spread called
the range.13

To create errorbars, we can simply use ggplot2’s geom_errorbar() function. We just need to tell it
which column corresponds to the bottom of the error bar (ymin) and which column corresponds to the top of
the errorbar (ymax).

1 ggplot(mm_summary, aes(x = type, y = m)) +

2 geom_bar(

3 stat = "identity",

4 colour = "black",

5 aes(fill = type)

6) +

7 scale_fill_discrete(type = mm_palette) +

8 geom_errorbar(aes(ymin = min, ymax = max), width = 0.25)

0

5

10

15

blue brown green orange red yellow
type

m

type

blue

brown

green

orange

red

yellow

All that remains is to give the plot some new labelling. In other words, we should add a better x and y
axis title and we should also put the x-axis labels in Title Case. The legend can be removed as well since it is

13If that isn’t entirely clear, don’t worry. The concept of spread as a statistical term will be explained in more detail in later
chapters.

3. The Invocation and Metamorphosis of Data 92

redundant with the labels on the x-axis.

To change the current labels “blue”, “brown”, “green” and so on to Title Case, we can use the function
scale_x_discrete() and use its labels argument. We just have to give it a character vector containing
the new labelling (FYI: make sure you specify them in the correct order).

To remove the legend, there are different methods you could employ. In this case, since we only have
the fill aesthetic mapped, it is easy enough to just add guide = "none" to the scale_fill_discrete()

function.

1 ggplot(mm_summary, aes(x = type, y = m)) +

2 geom_bar(

3 stat = "identity",

4 colour = "black",

5 aes(fill = type)

6) +

7 scale_fill_discrete(type = mm_palette, guide = "none") +

8 geom_errorbar(aes(ymin = min, ymax = max), width = 0.25) +

9 scale_x_discrete(

10 labels = c("Blue", "Brown", "Green", "Orange", "Red", "Yellow")

11) +

12 xlab("M&M Colour") +

13 ylab("M&M Amount")

0

5

10

15

Blue Brown Green Orange Red Yellow
M&M Colour

M
&

M
 A

m
ou

nt

Having read both chapter 2 and now this current chapter, there is one key aspect of plotting that has
not been dealt with yet. Specifically, how do you adjust the order of the categories? Suppose we wanted the
the colours, going from left to right, to be “red”, “orange”, “yellow”, “green”, “blue”, and “brown”. How would
we make that happen? That is where the concept of factors becomes important.

3.9 Factors

In statistics we often refer to a categorical variable as a factor,14 and factors have different levels. For instance,
in our tidy data (mm_data) the variable $type could be considered a factor. Each specified colour in that
column is a level of that factor: blue is its own level, brown is its own level, green is its own level, and so on.

14Independent, manipulated, and predictor variables are given this label when they have a fixed set of categories or are continuous
but only take on a limited number of discrete values. If this is unclear now, don’t worry — variable types will be explained in more
detail in a later chapter.

93 Factors

In other words, in the M&M data, the “type” factor has 6 levels.

To summarise, you can treat the term “factor” as synonymous with the terms “column” or “variable.”
And you can treat the term “level” as synonymous with the term “category.” Though, this only applies to tidy
data, not wide data.

• Factor = column / variable
• Level = category within a column / variable

If we examine mm_data :

1 mm_data

A tibble: 288 × 3

pkg type amount

<dbl> <chr> <dbl>

1 1 blue 13

2 1 brown 7

3 1 green 12

4 1 orange 9

5 1 red 7

6 1 yellow 8

7 2 blue 8

8 2 brown 3

9 2 green 13

10 2 orange 13

278 more rows

You can see that the output is telling us that the $type column is a character vector (notice the <chr>). In
other words, R does not know that “blue”, “brown”, “green”, etc. are categories. It just sees 278 individual
character values in that particular column.

3.9.1 Factoring a Column

For the purpose of plotting and analyses, it is important that R understands “blue”, “brown”, “green”, etc. are
levels of a factor (i.e., it is important that it treats these as categories). We can easily tell R that a particular
column is a factor using the function factor() .15

1 mm_data$type <- factor(mm_data$type)

2

3 mm_data

A tibble: 288 × 3

pkg type amount

<dbl> <fct> <dbl>

1 1 blue 13

2 1 brown 7

3 1 green 12

4 1 orange 9

5 1 red 7

6 1 yellow 8

7 2 blue 8

8 2 brown 3

15Technically, when we use this function we are replacing an existing column with a new column that happens to be a factor. We
are not really “telling” R it is a factor, we are “creating” a factor - but that’s just a nitpicky semantic issue.

3. The Invocation and Metamorphosis of Data 94

9 2 green 13

10 2 orange 13

278 more rows

Notice that now the column $type is now listed as <fct> , which stands for “factor.” Moreover, if we isolate
the column after doing this ...

1 mm_data$type

...

[261] green orange red yellow blue brown green orange red yellow

[271] blue brown green orange red yellow blue brown green orange

[281] red yellow blue brown green orange red yellow

Levels: blue brown green orange red yellow

You can see at the bottom of the output, that the six levels of our factor have been specified. Generally speaking,
to view the levels of a factor, a better practice is to use the levels() function.

1 levels(mm_data$type)

[1] "blue" "brown" "green" "orange" "red" "yellow"

3.9.2 Ordering Levels

Discerning readers will have noticed that the order of the levels here (from left to right) matches the order of the
bars on the plot we made earlier. This is because anytime you plot or summarise categories using ggplot2 and
dplyr functions respectively, these packages silently factor the data behind the scenes and R’s default behaviour
is to put factors in alphabetical order (which is why we saw the order we did). But we can change the order by
specifying it inside the factor function.

1 mm_data$type <- factor(mm_data$type,

2 levels = c("red", "orange", "yellow", "green", "blue", "brown")

3)

4

5 levels(mm_data$type)

[1] "red" "orange" "yellow" "green" "blue" "brown"

It is important to emphasize that this does not change anything about how the data is laid out in our
data frame. All those values are still in the same order. All we are doing here is telling R that, when it does
it any analyses or plotting, that “red” comes before “orange” which comes before “yellow”, and so on. For
instance, when we re-run our earlier code that created the summary statistic data, you can see that the $type

column now follows this new order we have specified.

1 mm_summary <- mm_data |>

2 group_by(type) |>

3 summarise(

4 m = mean(amount),

5 tot_type = sum(amount),

6 tot_overall = sum(mm_data$amount),

7 percent = tot_type / tot_overall * 100,

8 min = min(amount),

9 max = max(amount)

10)

11

12 mm_summary

95 Factors
A tibble: 6 × 7

type m tot_type tot_overall percent min max

<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 red 7.75 372 2620 14.2 2 12

2 orange 11.3 544 2620 20.8 7 17

3 yellow 7.69 369 2620 14.1 2 14

4 green 10.1 483 2620 18.4 5 17

5 blue 10.0 481 2620 18.4 5 16

6 brown 7.73 371 2620 14.2 3 12

Moreover, when we now plot the data the bars will also have shifted their position accordingly.

1 ggplot(mm_summary, aes(x = type, y = m)) +

2 geom_bar(stat = "identity")

0

3

6

9

red orange yellow green blue brown
type

m

3.9.3 Naming Levels

On occasion, it will be useful to rename the levels of a factor. For instance, all of our levels are currently lower
case, but to make them title case we could use the levels() function from earlier.

1 levels(mm_summary$type) <- c("Red", "Orange", "Yellow", "Green", "Blue", "Brown")

2

3 mm_summary

A tibble: 6 × 7

type m tot_type tot_overall percent min max

<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 Red 7.75 372 2620 14.2 2 12

2 Orange 11.3 544 2620 20.8 7 17

3 Yellow 7.69 369 2620 14.1 2 14

4 Green 10.1 483 2620 18.4 5 17

5 Blue 10.0 481 2620 18.4 5 16

6 Brown 7.73 371 2620 14.2 3 12

A corresponding change will be seen on the plot’s x-axis labels as well when that is generated.

A word of warning is needed here. DO NOT confuse the levels argument inside factor() function
with the levels() function. The levels argument is used for ordering levels. The levels() function is
for re-naming levels.16

16At the risk of confusing readers, I feel obligated to mention that the factor() function has an additional argument labels

3. The Invocation and Metamorphosis of Data 96

• Ordering levels: factor(df$column, levels = c(new order))

• Naming levels: levels(df$column) <- c(new names)

Particularly for beginners, factors are annoying to contend with, but they are vital for so many things
within R and therefore a necessary evil. Consequently, it is recommended to new users that they submit and
wholeheartedly embrace this wickedness. Only then will they find inner peace with factoring.

that will allow you to change the level names. See R documentation: ?factor

Glossary

aesthetics The modifiable visual elements of a ggplot2 graph. E.g., point shapes, fill colours, edge colours, etc.

argument Modifiable parameters of a function that alters how it operates.

assignment operator A symbol (e.g., <-) that assigns a name to an object in R so it can be easily sourced by
the user from the computer’s memory. R contains three different assignment operators. R Documentation:
?assignOps

bivariate data Data consisting of a two variables.

boolean A term used to denote logical (true or false) statements and objects. Named after the English
mathematician and logician George Boole.

character A type of storage mode in R for character strings.

colon operator A symbol, : , used to create regular sequences of integers. R Documentation: ?colon

command console An interface used for communicating instructions to a computer and (usually) viewing
outputs. On modern digital computers it typically takes the form of a software application but, in ancient
times, was a physical console of buttons and dials that you “commanded” the computer from.

Comprehensive R Archive Network A set of mirrored servers around the world that distribute R and its
associated packages.

CRAN Comprehensive R Archive Network

data frame A object class in R with rows and columns resembling a spreadsheet structure. R Documentation:
?data.frame

delimiter A character within a data file used to delimit (i.e., define the limits of) individual values.

directory An address that directs you to a file

factor A vector that stores categorical data. Each category within a factor is called a level. R Documentation:
?factor

file extension An identifier appended to the end of a file name that dictates how a file should be read by an
application. The extension is indicated by a period followed by one to three characters. E.g., my_script.R
or cat.png

97

Glossary 98

function A line of code that takes inputs (objects and arguments) and produces a corresponding output.

functional A function that accepts another function as an input and produces a vector as output. E.g.,
apply()

IDE integrated development environment

infinity Trying to define this is way above my pay grade (which for this textbook is literally nothing). Just
see the “Math is Fun” website:
https://www.mathsisfun.com/numbers/infinity.html

integrated development environment A software application that aims to give programmers a nice visual
workspace and comprehensive feature set with which to do their programming.

level A category belonging to a factor class of object.

logical A type of storage mode in R for logical (i.e., true and false) values (also referred to as boolean values).

logical operator A symbol used to refine logical statements. R Documentation: ?Logic

mode A classification (e.g., numeric, character, logical) of how an object is stored in R.

modulo operator A mathematical operator that returns the remainder of a dividend and divisor.

modulus The value returned using a modulo operation.

multivariate data Data consisting of a more than two variables.

negation operator Symbolized using a exclamation mark (!), this is a type of logical operator that indi-
cates the negation of an object’s values. For example, !x is read as “not x.”

non-syntactic name A object name enclosed by backticks. E.g. `fav num` <- 666 .

null value Represented as NULL in the R language, this is used to represent undefined objects. R Documen-
tation: ?NULL

numeric A type of storage mode in R for numbers.

package A collection of functions, associated documentation, and data compiled for users to install via a online
repository.

pch R’s abbreviation for “plotting character”. An integer or character value that specifies what symbol gets
plotted as a point on a graph. R Documentation: ?points

position scale In ggplot2, this refers to a type of scale that controls the location mapping of a plot’s visual
elements.

programming language A language humans use to communicate instructions to a computer.

relational operator A symbol (e.g., ==) that is used to determine whether a specific comparison between
two values is true or false. R Documentation: ?Comparison

https://www.mathsisfun.com/numbers/infinity.html

99 Glossary

reserved words Words that have specific functions and meanings within the R language and cannot be used
as syntactic names. R Documentation: ?Reserved

RStudio An integrated development environment for R.

scatter plot A type of graph that is used to visualize the relationship between two paired variables. The
observations of one variable are plotted on the x-axis, while the observations of the other variable are
plotted on the y-axis. The intersection of the x-y pairs are plotted as points on a Cartesian plane (i.e., a
grid). For further details see https://www.mathsisfun.com/data/scatter-xy-plots.html

scientific notation A method of writing very large or small numbers in a compact way. E.g., 66613000 can
be written as 666.13× 105 or 666.13e+5

script A text document (e.g., .R or .txt) for storing computer code that can be run or modified by a user.
Integrated development environments usually provide a separate window for typing and saving scripts.

subdirectory A directory nested within another directory.

syntactic name A object name consisting of letters, numbers and the dot or underline characters and starts
with a letter or the dot not followed by a number. R Documentation: ?make.names

tibble The tidyverse’s modern reimagining of the data frame.

tidy data A sacred formation of data, guided by three precepts, that form the bedrock of the tidyverse’s
magik. Also referred to as the “long format” data by unbelievers.

tidyverse A powerful set of R magick, with an underlying philosophy, that allows those devoted to it to weave,
transform, and manipulate data with a dark mystical ease that some call unnatural.

univariate data Data consisting of a single variable.

vector In R, a (atomic) vector is an object with at least one value and a single mode. R Documentation:
?vector

In computer programming more generally, a vector is a one-dimensional array of values.

wide data Data which spreads variables across multiple columns.

working directory The default address on a computer where R saves and pulls files.

https://www.mathsisfun.com/data/scatter-xy-plots.html

Appendix A

<- vs. =

The original assignment operator of the S programming language was <- . The use of = to assign names to
objects was a more recent development in S’s history. This was doubtlessly motivated by 1) the intuitive appeal
of = (you are setting something equal to something else), 2) its cleaner look, 3) its correspondence with other
modern programming languages, and 4) the basic fact that it requires one less key to type. It also has the added
benefit of not resulting in confusion when dealing with inequalities. For instance, something like x<-1 could
be read as either assigning a value of 1 to x or could be evaluating whether x is less than −1. As written
here, the statement will result in the former unless appropriate spacing is applied; i.e., x < -1 .

Despite the obvious benefits of using = , much of R’s core user-base has held as steadfastly to <- as
a child would to a teddy bear. To understand the reluctance towards using = , it is helpful to know that,
prior to its use as an assignment operator, the = was used to designate values to arguments inside a function
(see section 1.4.7) and, to this day, it still serves this purpose. Consequently, when it was granted the coveted
position of “assignment operator” it now had dual syntactic roles within the language but with a particular
limitation. Specifically, you cannot use it to assign a name to an object within an R function’s argument. i.e.,
you cannot use = to set an argument and assign an name simultaneously. However, you can do this using the
<- .

For example, if we use R’s sum() function to calculate the sum of the numbers one through five using
= to set the function’s main argument. We can see that, while the function works as intended (producing a
value of 15), there is no new variable generated that stored the values one through five:

1 sum(x = 1:5)

2 x

[1] 15

Error: object 'x' not found

However, if we run the same code, but use the <- to set the argument, we can see that the numbers 1 through
5 are stored.

1 sum(x <- 1:5)

2 x

[1] 15

[1] 1 2 3 4 5

The <- also has an advantage in that a simple variant of it, <<- , allows you to create variables within
your own custom-made functions that are executable outside the scope of that function. Admittedly, this is a

101

A. <- vs. = 102

more advanced usage than readers of this text are likely to need, but it is an useful feature to know about as
skills with R develop.

As a basic illustration, suppose we created a function, rational_pi() , that rounds π to 3 like so...

1 rational_pi = function() {

2 rat_pi <- round(pi)

3 return(rat_pi)

4 }

When we run the function, it straightforwardly spits out a 3

1 rational_pi()

[1] 3

But when we run object rat_pi we get an error message saying the object cannot be found:

1 rat_pi

Error: object 'rat_pi' not found

At face value this is odd behaviour because, to be able to run the line return(rat_pi) , the object rat_pi

must have been stored at some point. And it was stored, but only within the scope of the function. To make
rat_pi available outside the function’s scope, we can employ <<- when we define the function:

1 rational_pi = function() {

2 rat_pi <<- round(pi)

3 return(rat_pi)

4 }

5

6 rational_pi()

7 rat_pi

[1] 3

[1] 3

Now we have a “rational” version of π stored as rat_pi . However, one other intriguing feature of <<- needs
to be mentioned in this context: <<- only assigns a value within the function’s scope, if the object you are
creating does not already exist inside the function. However, the value will still get assigned globally (i.e.,
outside of the function’s scope). This is easiest to comprehend with a simple example:

1 rational_pi = function() {

2 rat_pi <- 10

3 rat_pi <<- round(pi)

4 return(rat_pi)

5 }

6

7 rational_pi() #Notice the function produces 10

8 rat_pi #However, the object stores 3

[1] 10

[1] 3

A couple of other final points in favour of <- is its reversibility (i.e., being able to write it as -> and
->>) and the fact that most of the example code inside R’s help documentation is written using <- . Thus,
in theory, using <- consistently is likely to make this documentation more intelligible at a quick glance for a
user than constantly using = would.

Appendix B

HCLColour Palettes

103

B. HCL Colour Palettes 104

B.1 Sequential Palettes

Grays Light Grays Blues 2

Blues 3 Purples 2 Purples 3

Reds 2 Reds 3 Greens 2

Greens 3 Oslo Purple−Blue

Red−Purple Red−Blue Purple−Orange

Purple−Yellow Blue−Yellow Green−Yellow

Red−Yellow Heat Heat 2

Terrain Terrain 2 Viridis

Plasma Inferno Rocket

Mako Dark Mint Mint

BluGrn Teal TealGrn

Emrld BluYl ag_GrnYl

Peach PinkYl Burg

BurgYl RedOr OrYel

Purp PurpOr Sunset

Magenta SunsetDark ag_Sunset

BrwnYl YlOrRd YlOrBr

OrRd Oranges YlGn

YlGnBu Reds RdPu

PuRd Purples PuBuGn

PuBu Greens BuGn

GnBu BuPu Blues

Lajolla Turku Hawaii

Batlow

105 Diverging Palettes

B.2 Diverging Palettes

Blue−Red Blue−Red 2 Blue−Red 3

Red−Green Purple−Green Purple−Brown

Green−Brown Blue−Yellow 2 Blue−Yellow 3

Green−Orange Cyan−Magenta Tropic

Broc Cork Vik

Berlin Lisbon Tofino

B.3 Qualitative Palettes

Pastel 1 Dark 2 Dark 3

Set 2 Set 3 Warm

Cold Harmonic Dynamic

References

Becker, R. A., & Chambers, J. M. (1984). S: An interactive environment for data analysis and graphics. Wadsworth.

Brewer, C. A. (1994). Color use guidelines for mapping and visualization. In A. M. MacEachren & D. R. F. Taylor (Eds.),
Visualization in modern cartography (pp. 123–147, Vol. 2). https://doi.org/10.1016/B978-0-08-042415-6.50014-4

Bro. (n.d.). Dude, trust me.

Carr, D. (1994). Using gray in plots. ASA Statistical Computing and Graphics Newsletter, 2(5), 11–14.

Carr, D. (2002). Graphical displays. In A. H. El-Shaarawi & W. W. Piegorsch (Eds.), Encyclopedia of environmetrics
(pp. 933–960, Vol. 2). John Wiley & Sons.

Carr, D., & Sun, R. (1999). Using layering and perceptual grouping in statistical graphics. ASA Statistical Computing
and Graphics Newsletter, 10(1), 25–31.

Cleveland, W. S. (1993). A model for studying display methods of statistical graphics. Journal of Computational and
Graphical Statistics, 2(4), 323–343. https://doi.org/10.2307/1390686

Doré, G. (1862). Little red riding hood [Painting]. National Gallery of Victoria, Melbourne. https://www.ngv.vic.gov.
au/explore/collection/work/3918/

Free Software Foundation. (2024). What is free software? Retrieved August 26, 2024, from https ://www.gnu.org/
philosophy/free-sw.html

Hunt, P. (2024). Source code pro [version 2.042R-u_1.062R-i]. https://github.com/adobe-fonts/source-code-pro

Madison, J. (2007). M & M’s color distribution analysis. Retrieved July 24, 2024, from https://joshmadison.com/2007/
12/02/mms-color-distribution-analysis/

Muenchen, B. (2017). R-bloggers: The tidyverse curse. Retrieved July 18, 2024, from https://www.r-bloggers.com/2017/
03/the-tidyverse-curse/

Pennant, T. (1784). A tour in wales (Vol. 4). http://hdl.handle.net/10107/4691510

Pierce, R. (2022). Math is fun: What is a function. Retrieved July 9, 2022, from http://www.mathsisfun.com/sets/
function.html

Tufte, E. R. (2006). Beautiful evidence. Graphics Press.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433–460. https://doi.org/10.1093/mind/
LIX.236.433

UNESCO. (2021). UNESCO recommendation on open science. https://doi.org/10.54677/MNMH8546

Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for data science: Import, tidy, transform, visualize,
and model data (Second). O’Reilly Media. https://r4ds.hadley.nz/

Wickham, H., Navarro, D., & Pedersen, T. L. (2024). ggplot2: Elegant graphics for data analysis (3e). Retrieved July 18,
2024, from https://ggplot2-book.org/

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L.,
Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel,
D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686.
https://doi.org/10.21105/joss.01686

107

https://doi.org/10.1016/B978-0-08-042415-6.50014-4
https://doi.org/10.2307/1390686
https://www.ngv.vic.gov.au/explore/collection/work/3918/
https://www.ngv.vic.gov.au/explore/collection/work/3918/
https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
https://github.com/adobe-fonts/source-code-pro
https://joshmadison.com/2007/12/02/mms-color-distribution-analysis/
https://joshmadison.com/2007/12/02/mms-color-distribution-analysis/
https://www.r-bloggers.com/2017/03/the-tidyverse-curse/
https://www.r-bloggers.com/2017/03/the-tidyverse-curse/
http://hdl.handle.net/10107/4691510
http://www.mathsisfun.com/sets/function.html
http://www.mathsisfun.com/sets/function.html
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.54677/MNMH8546
https://r4ds.hadley.nz/
https://ggplot2-book.org/
https://doi.org/10.21105/joss.01686

References 108

Zeileis, A., & Murrell, P. (2019). HCL-based color palettes in grDevices. Retrieved July 21, 2024, from https://developer.r-
project.org/Blog/public/2019/04/01/hcl-based-color-palettes-in-grdevices/

https://developer.r-project.org/Blog/public/2019/04/01/hcl-based-color-palettes-in-grdevices/
https://developer.r-project.org/Blog/public/2019/04/01/hcl-based-color-palettes-in-grdevices/

	Title
	Preface
	R Programming: An Initiation
	What the F**k is R?
	The Genesis of R

	Why the F**k Should I Use R?
	Installing and Running R on Your Computer
	Languages and Environments
	Installation
	Upgrading
	Consoles and Scripts
	Keyboard Shortcuts

	How To Code Using R: The Fundamentals
	Basic Arithmetic
	Understanding Scientific Notation
	Commenting Out Lines
	Creating Objects
	Vectors
	Operators And Comparison Statements
	Functions
	R (Help) Documentation
	Missing Values
	Data Frames

	Packages
	File Extensions
	Directories
	The Working Directory
	Navigating Directories

	Harnessing Sacred Rites of the tidyverse: Plotting Basics
	Worshiping at the alter of the tidyverse
	Plotting with R
	An example data set: msleep

	Adding layers
	Inspecting potential outliers
	Logarithms

	Aesthetics
	Aesthetics by variable

	Displaying trends
	Facets
	Labels
	Saving the plot
	Vector graphics vs. Raster graphics

	Scales
	Position Scales: Modifying the Axis Breaks
	Modifying the Axis Range
	Colour Scales: Modifying Colour Mappings
	Discrete Colour Scales
	Continuous Colour Scales
	Shape Scales
	Legend Titles
	Other Scales

	Modifying Other Non-data Components
	Built-in Themes
	Customizing Themes

	A Final Note

	The Invocation and Metamorphosis of Data
	Spreadsheet Software
	Using an Ethical File Format
	The .CSV Format
	Delimiters
	Reading a CSV File into R
	Reading Other File Types into R

	Tibbles vs. Data Frames
	Displaying Tibbles in the Console

	Wide Data vs. Tidy Data
	Wide Data
	Tidy data

	Laying Pipe (The |> and %>% Operators)
	Data Manipulation Example

	Factors
	Factoring a Column
	Ordering Levels
	Naming Levels

	Glossary
	<- vs. =
	HCL Colour Palettes
	Sequential Palettes
	Diverging Palettes
	Qualitative Palettes

	References

